

COUNTRY	CODE
BR	

ORDERED TEST #

ABOUT THE TEST FoundationOne[®] Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

PATIENT	DISEASE Bone osteosarcoma NAME DATE OF BIRTH SEX MEDICAL RECORD #	PHYSICIAN	ORDERING PHYSICIAN MEDICAL FACILITY ADDITIONAL RECIPIENT MEDICAL FACILITY ID PATHOLOGIST	SPECIMEN	SPECIMEN SITE SPECIMEN ID SPECIMEN TYPE DATE OF COLLECTION SPECIMEN RECEIVED
:		:		:	

Biomarker Findings

Microsatellite status - Cannot Be Determined $^{\alpha}$ Tumor Mutational Burden - 7 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

KIT amplification PDGFRA amplification CDK4 amplification FGFR1 amplification - equivocal[†] MDM2 amplification CCND3 amplification FRS2 amplification KDR amplification RAD21 amplification TP53 R337H ZNF703 amplification - equivocal[†]

 † See About the Test in appendix for details.
 a Patients with Microsatellite status of Cannot Be Determined should be re-tested with an orthogonal (alternative) method.

BIOMARKER FINDINGS

Microsatellite status - Cannot Be Determined

Tumor Mutational Burden - 7 Muts/Mb

Report Highlights

- Variants with diagnostic implications that may indicate a specific cancer type: CDK4 amplification (p. 5), MDM2 amplification (p. 6)
- Targeted therapies with NCCN categories of evidence in this tumor type: Sorafenib (p. 12)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 13)

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. see Biomarker Findings section

No therapies or clinical trials. see Biomarker Findings section

COUNTRY CODE

BR

ORDERED TEST #

GENOMIC FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
KIT - amplification	none	Sorafenib 2A
		Imatinib
		Nilotinib
10 Trials see <i>p. 17</i>		Sunitinib
PDGFRA - amplification	none	Imatinib
1 Trial see p. 20		
CDK4 - amplification	none	none
10 Trials see <i>p.</i> 13		
FGFR1 - amplification - equivocal	none	none
10 Trials see p. 15		
MDM2 - amplification	none	none
1 Trial see p. 19		
		NCCN category
GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL T	RIAL OPTIONS	

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

CCND3 - amplification	p. 6	RAD21 - amplification	p. 8
FRS2 - amplification		TP53 - R337H	p. 9
KDR - amplification		ZNF703 - amplification - equivocal	p. 10

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type.

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

BIOMARKER Microsatellite status

RESULT Cannot Be Determined

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of prospective clinical evidence in multiple solid tumor types, microsatellite instability (MSI) and associated increased tumor mutational burden (TMB)¹⁻² may predict sensitivity to immune checkpoint inhibitors, including the approved PD-1-targeting agents cemiplimab, dostarlimab, nivolumab (alone or in combination with ipilimumab), and pembrolizumab³⁻⁸ and PD-L1-targeting agents atezolizumab, avelumab, and durvalumab⁹⁻¹¹. As the MSI status of this tumor is unknown, the relevance of these therapeutic approaches is

unclear.

FREQUENCY & PROGNOSIS

In osteosarcoma, MSI at any level has been reported in 14% (3/21) to 44% (8/18) of cases with high MSI observed in 11% (2/18) of cases¹²⁻¹³. However, other studies have reported an absence of MSI in osteosarcoma (o/7 and o/68)¹⁴⁻¹⁵ and bone sarcoma (o/29)¹⁶. The prognostic significance of MSI in osteosarcoma or other bone mesenchymal tumors is unknown (PubMed, Sep 2021).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁷. Defective MMR and consequent MSI occur as a

result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2¹⁷⁻¹⁹. The level of MSI in this sample could not be determined with confidence. Depending on the clinical context, MSI testing of an alternate sample or by another methodology could be considered.

TUMOR TYPE

Bone osteosarcoma

POTENTIAL GERMLINE IMPLICATIONS

While approximately 80% of MSI-H tumors arise due to somatic inactivation of an MMR pathway protein, about 20% arise due to germline mutations in one of the MMR genes¹⁷, which are associated with a condition known as Lynch syndrome (also known as hereditary nonpolyposis colorectal cancer or HNPCC)²⁰. Lynch syndrome leads to an increased risk of colorectal, endometrial, gastric, and other cancers²⁰⁻²² and has an estimated prevalence in the general population ranging from 1:600 to 1:2000²³⁻²⁵. Therefore, in the appropriate clinical context, germline testing of MLH1, MSH2, MSH6, and PMS2 is recommended.

BIOMARKER

Tumor Mutational Burden

RESULT 7 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies — On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1²⁶⁻²⁸, anti-PD-1 therapies²⁶⁻²⁹, and combination nivolumab and ipilimumab³⁰⁻³⁵. In multiple pan-tumor studies, higher TMB has been reported to be associated with increased ORR and OS from treatment with immune checkpoint inhibitors^{26-29,36}. Higher TMB was found to be significantly associated with improved OS upon immune checkpoint inhibitor treatment for patients with 9 types of advanced tumors²⁶. Analyses across several solid tumor types reported

that patients with higher TMB (defined as ≥16-20

Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy, compared with patients with higher TMB treated with chemotherapy³⁷ or those with lower TMB treated with PD-1 or PD-L1-targeting agents²⁷. However, the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors found significant improvement in ORR for patients with TMB ≥10 Muts/Mb (based on this assay or others) compared to those with TMB <10 Muts/Mb, in a large cohort that included multiple tumor types; similar findings were observed in the KEYNOTE 028 and 012 trials^{29,36}. Together, these studies suggest that patients with TMB ≥10 Muts/Mb may derive clinical benefit from PD-1 or PD-L1 inhibitors.

FREQUENCY & PROGNOSIS

Osteosarcoma harbors a median TMB of 2.5 mutations per megabase (muts/Mb), and 0.4% of cases have high TMB (>20 muts/Mb)³⁸. Undifferentiated pleomorphic sarcomas reportedly have an increased mutation burden compared to Ewing sarcomas or rhabdomyosarcomas³⁹⁻⁴¹. The association of mutation burden with prognosis of bone sarcoma has not been studied extensively (PubMed, Sep 2021); however, one study of 31 patients with high-grade osteosarcoma reported a significant association of high TMB and improved median OS by multivariate analysis (HR=0.05, p=0.03)⁴².

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma43-44 and cigarette smoke in lung cancer^{7,45}, treatment with temozolomide-based chemotherapy in glioma⁴⁶⁻⁴⁷, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁴⁸⁻⁵², and microsatellite instability (MSI)^{48,51-52}. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{27-28,36}.

© 2021 Foundation Medicine, Inc. All rights reserved.

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

BIOMARKER FINDINGS

^{gene}

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence, primarily in GIST, AML, and systemic mastocytosis, KIT activating alterations are associated with sensitivity to KIT tyrosine kinase inhibitors including imatinib, sunitinib, sorafenib, dasatinib, nilotinib, pazopanib, regorafenib, ponatinib, midostaurin, avapritinib, and ripretinib⁵³⁻⁶⁰. The use of mTOR inhibitors as an alternative therapeutic strategy has demonstrated limited success in KIT-mutated, imatinib-resistant melanoma, with 1 PR and 3 SD observed for 4 patients treated with everolimus⁶¹. However, no responses were observed for 10 patients with mastocytosis following everolimus monotherapy,

with 8/10 patients harboring the KIT D816V mutation⁶². The role of KIT amplification as a biomarker for response to mTOR inhibitors has not been investigated (PubMed, Mar 2021). Clinical benefit has been observed for patients with KIT amplified or overexpressing tumors following treatment with imatinib⁶³⁻⁷³, nilotinib⁷⁴, sorafenib⁷⁵⁻⁷⁸, and sunitinib⁷⁹⁻⁸⁰, suggesting that KIT amplification may be sensitive to these inhibitors. However, evidence demonstrating clinical benefit for regorafenib, dasatinib, pazopanib, or ponatinib in the context of KIT amplified or overexpressing tumors is limited.

FREQUENCY & PROGNOSIS

PATIENT

KIT amplification has been reported in 20% (13/66)⁸¹ to 35% (24/74)⁸² of osteosarcoma cases. Relative to all tumor types analyzed, coamplification of KIT, KDR, and PDGFRA on the 4q12 locus has been reported to be enriched in osteosarcomas; although primarily bone-derived (6.4%; 27/420), 1 of 15 soft tissue osteosarcoma (extraskeletal) samples also harbored this amplicon⁸³. Studies have observed KIT TUMOR TYPE Bone osteosarcoma

GENOMIC FINDINGS

amplification and overexpression in pediatric osteosarcomas; KIT expression has been reported to correlate with a poor response to chemotherapy, but not with overall survival or disease-free survival, in pediatric osteosarcoma^{82,84}. KIT amplification and overexpression have also been reported in pediatric patients with osteosarcoma, and KIT expression has been reported to correlate with poor response to chemotherapy, but not with overall survival or disease-free survival^{82,84}.

FINDING SUMMARY

KIT (also called c-KIT) encodes a cell surface tyrosine kinase receptor that, upon ligand binding and dimerization, activates the PI₃K-AKT and RAS-MAPK signaling pathways⁸⁵. KIT aberrations, including point mutations, translocations, amplification, and overexpression, have been associated with various malignancies, and KIT is considered an oncoprotein⁸⁶. KIT has been reported to be amplified in cancer⁸⁷ and may be biologically relevant in this context⁸⁸⁻⁸⁹.

gene PDGFRA

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

 — Targeted Therapies —
 On the basis of extensive clinical evidence in solid tumors and hematologic cancers, PDGFRA

tumors and hematologic cancers, PDGFRA activating alterations are associated with sensitivity to imatinib⁹⁰⁻¹²⁷. Sorafenib has shown clinical and preclinical activity against the FIP1L1-PDGFRA fusion in chronic eosinophilic leukemia (CEL) and mutations associated with clinical resistance to imatinib and sunitinib in both CEL and gastrointestinal stromal tumor (GIST)¹²⁸⁻¹³³. Complete responses to nilotinib have been reported in patients with CEL or hypereosinophilic syndrome with FIP1L1-PDGFRA or activating mutations^{106,134-135};

preclinical evidence has reported efficacy of nilotinib in the context of PDGFRA mutations associated with GIST¹³⁶⁻¹³⁷. Patients with GIST harboring PDGFRA activating mutations have been reported to derive clinical benefit from treatment with sunitinib¹³⁸ or regorafenib¹³⁹⁻¹⁴⁰. Preclinical studies have reported sensitivity of activating PDGFRA mutations and FIP1L1-PDGFRA fusion to dasatinib^{130,136}. PDGFRA D84.2 mutations were reported to be sensitive to avapritinib in clinical⁵³ and preclinical⁵³ studies of GIST, and demonstrated sensitivity to ripretinib for 1 patient¹⁴¹.

FREQUENCY & PROGNOSIS

Relative to all tumor types analyzed, coamplification of KIT, KDR, and PDGFRA on the 4q12 locus has been reported to be enriched in osteosarcomas; although primarily bone-derived (6.4%; 27/420), 1 of 15 soft tissue osteosarcoma (extraskeletal) samples also harbored this amplicon⁸³. High PDGFRA expression was detected in 42% (40/96) of osteosarcoma samples in one study; none of the 40 cases with high PDGFRA expression harbored mutation of PDGFRA exons 12 or 18¹⁴². PDGFRA mutation was not detected in any of the 243 osteosarcoma cases analyzed in COSMIC (Mar 2021)¹⁴³. PDGFRalpha expression has been reported in patients with osteosarcoma but was not correlated with overall or disease-free survival^{142,144-145}.

FINDING SUMMARY

PDGFRA encodes platelet-derived growth factor receptor alpha (PDGFR-alpha), a tyrosine kinase receptor that, upon binding of cognate ligands (PDGFA or PDGFB), activates several signaling pathways, including PI₃K and MAPK¹⁴⁶. PDGFR aberrations, including point mutations, translocations, amplification, and/or overexpression, have been associated with various malignancies⁸⁶. Amplification of PDGFRA, frequently occurring with amplification of the genes KDR and KIT, has been associated with increased PDGFRA expression¹⁴⁷⁻¹⁵⁰ and poor prognosis^{147,151-153} in some subtypes of glioma.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Bone osteosarcoma

GENOMIC FINDINGS

ORDERED TEST #

GENE CDK4

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

CDK4 amplification or activation may predict sensitivity to CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib¹⁵⁴⁻¹⁵⁷. Clinical benefit has been reported for limited tumor types including patients with CDK4-amplified liposarcoma and sarcoma in response to treatment with abemaciclib¹⁵⁸, palbociclib^{154,159}, and ribociclib¹⁶⁰.

^{gene} FGFR1

ALTERATION amplification - equivocal

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies —

Alterations that activate FGFR1 may predict sensitivity to selective FGFR inhibitors including erdafitinib¹⁸²⁻¹⁸⁴, pemigatinib¹⁸⁵, infigratinib¹⁸⁶⁻¹⁸⁷, rogaratinib¹⁸⁸, Debio 1347¹⁸⁹⁻¹⁹⁰, futibatinib¹⁹¹, and derazantinib¹⁹², or multikinase inhibitors such as pazopanib¹⁹³ and ponatinib¹⁹⁴⁻¹⁹⁶. The activity and efficacy of selective FGFR inhibitors for FGFR1-amplified tumors has been modest with limited responses reported in FGFR1-amplified lung squamous cell carcinoma (SCC) treated with infigratinib¹⁹⁷ or AZD457¹⁹⁸ and no responses reported among patients with FGFR1-amplified

FREQUENCY & PROGNOSIS

Amplification of CDK4 has been reported in a subset of osteosarcoma samples¹⁶¹⁻¹⁶⁵. CDK4 amplification has been reported to be relatively rare in conventional high-grade osteosarcoma but frequent in low-grade osteosarcomas, including parosteal osteosarcomas and low-grade central osteosarcomas, suggesting that CDK4 expression may help facilitate subclassification in osteosarcoma¹⁶³⁻¹⁶⁵. Deregulation of the G1/S checkpoint genes, including CDK4, and expression of the cyclin D1/CDK4 complex have been associated with poor prognosis in osteosarcoma patients¹⁶⁶⁻¹⁶⁷.

FINDING SUMMARY

CDK4 encodes the cyclin-dependent kinase 4, which regulates the cell cycle, senescence, and apoptosis¹⁶⁸. CDK4 and its functional homolog CDK6 are activated by D-type cyclins and promote

breast cancer treated with infigratinib¹⁹⁷. Two case studies reported PRs in patients with FGFR1-amplified breast cancer treated with pazopanib¹⁹³.

– Potential Resistance –

Preclinical studies suggest that overexpression of FGFR1 may be a mechanism of acquired resistance to gefitinib; addition of an FGFR inhibitor restored gefitinib sensitivity in lung cancer cell lines¹⁹⁹⁻²⁰⁰.

FREQUENCY & PROGNOSIS

Putative amplification of FGFR1 has been detected in 4.4% of sarcoma cases, although this dataset only included soft tissue sarcoma (cBioPortal, Jun 2021)^{87,201}. FGFR1 amplification was reported in osteosarcoma cell lines and in 1/17 primary osteosarcoma samples²⁰². In one study, FGFR1 protein expression was observed in 82% (45/55) of phosphaturic mesenchymal tumors (PMTs) cell cycle progression by inactivating the tumor suppressor Rb¹⁶⁹⁻¹⁷⁰. Amplification of the chromosomal region that includes CDK4 has been reported in multiple cancer types, including lung cancer, glioblastoma, and liposarcoma, and has been associated with overexpression of CDK4 protein^{154,163,171-176}.

POTENTIAL DIAGNOSTIC IMPLICATIONS

Amplification of 12q13–q15, including CDK4 and MDM2, is characteristic of well-differentiated liposarcoma (WDLPS) and dedifferentiated (DDLPS) liposarcoma (NCCN Soft Tissue Sarcoma Guidelines, v2.2021)¹⁷⁶⁻¹⁷⁹, and low-grade osteosarcomas, including parosteal osteosarcomas and low-grade central osteosarcomas as opposed to conventional high-grade osteosarcoma (NCCN Soft Tissue Sarcoma Guidelines, v2.2021)^{163-165,180-181}.

analyzed, and expression was independent of FGFR1 fusion status; positive expression was also observed in a subset of PMT-mimicking tumors (10 samples per tumor type), such as solitary fibrous tumors (40%, 4/10), chondrosarcomas (40%), giant cell tumors of bone (38%), non-ossifying fibromas (20%), osteosarcomas (10%), and osteoblastomas (10%)²⁰³. Published data investigating the prognostic implications of FGFR1 alterations in osteosarcoma are limited (PubMed, Jun 2021).

FINDING SUMMARY

FGFR1 encodes the protein fibroblast growth factor receptor 1, which plays key roles in regulation of the cell cycle and angiogenesis and is an upstream regulator of the RAS, MAPK, and AKT signaling pathways²⁰⁴. Amplification of FGFR1 has been correlated with protein expression²⁰⁵⁻²⁰⁶ and may predict pathway activation and sensitivity to therapies targeting this pathway²⁰⁷⁻²⁰⁸.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

gene MDM2

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -MDM2 antagonists disrupt the MDM2-p53 interaction, thereby stabilizing p53209. Preclinical studies have suggested that the amplification of MDM2, in the absence of concurrent TP53 mutations, may increase sensitivity to these agents²¹⁰⁻²¹¹. Preliminary Phase 1 studies of the MDM2-p53 antagonist alrizomadlin (APG-115) reported a PR in a patient with liposarcoma harboring an MDM2 amplification and wildtype for TP53 and SD in 21%-38% (6/28 and 5/13, respectively) of patients in genomically unselected solid tumors²¹²⁻²¹³ . A Phase 2 trial of alrizomadlin in combination with pembrolizumab reported a PR in 1 of 3 patients with malignant peripheral nerve sheath tumor that had failed standard therapy, as well as PRs in patients with multiple types of solid tumors that had failed immunotherapy, including 1 out of 14 patients with non-small cell lung cancer; 1 out of 5 patients with urothelial carcinoma; and 2 out of5, 1 out of 5, and 1 out of 11 patients with mucosal, uveal, and cutaneous melanoma, respectively²¹⁴. Phase 1b studies of the MDM2 inhibitor idasanutlin for

refractory AML in combination with cytarabine or venetoclax reported anti-leukemic response rates of 33% (25/75) and 37% (11/30), respectively²¹⁵⁻²¹⁶; clinical benefit (58% ORR, 7/12) with idasanutlin monotherapy has been reported for patients with polycythemia vera²¹⁷. The dual MDM2/MDM4 inhibitor ALRN-6924 led to an ORR of 27% (4/15) for patients with TP53 wildtype peripheral T-cell lymphoma in a Phase 2 study²¹⁸; responses have also been observed in TP53 wildtype AML, MDS, Merkel cell carcinoma, colorectal cancer, and liposarcoma²¹⁹⁻²²⁰.

FREQUENCY & PROGNOSIS

PATIENT

Amplification of MDM2 has been reported in 19-80% of osteosarcomas^{180-181,221}. MDM2 amplification has been reported to be relatively rare in conventional high-grade osteosarcoma but frequent in low-grade osteosarcomas, including parosteal osteosarcomas and low-grade central osteosarcomas, suggesting that MDM2 expression may help facilitate subclassification in osteosarcoma¹⁶³⁻¹⁶⁵. Deregulation of the G1/S checkpoint genes, including amplification of CDK4 and MDM2, has been found to be correlated with decreased survival and poor prognosis in osteosarcoma patients¹⁶⁶.

FINDING SUMMARY

MDM2 encodes an E3 ubiquitin protein ligase, which mediates the ubiquitination and subsequent degradation of p53, Rb1, and other proteins²²²⁻²²⁴.

TUMOR TYPE Bone osteosarcoma

GENOMIC FINDINGS

MDM2 acts to prevent the activity of the tumor suppressor p53; therefore, overexpression or amplification of MDM2 may be oncogenic²²⁵⁻²²⁶. Overexpression or amplification of MDM2 is frequent in cancer⁸⁹. Although two retrospective clinical studies suggest that MDM2 amplification may predict a short time-to-treatment failure on anti-PD-1/PD-L1 immune checkpoint inhibitors, with 4/5 patients with MDM2 amplification²²⁷ and 2/3 patients with MDM2 or MDM4 amplification²²⁸ experiencing tumor hyperprogression, amplification of MDM₂ or MDM4 was not associated with shorter progression-free survival (PFS) in a retrospective analysis of non-small cell lung cancer (NSCLC) outcomes with immune checkpoint inhibitors (hazard ratio of 1.4, p=0.44)²²⁹. The latter study reported PFS of >2 months for 5/8 patients with MDM₂/MDM₄ amplification²²⁹.

POTENTIAL DIAGNOSTIC IMPLICATIONS

Amplification of 12q13–q15, including CDK4 and MDM2, is characteristic of well-differentiated liposarcoma (WDLPS) and dedifferentiated (DDLPS) liposarcoma (NCCN Soft Tissue Sarcoma Guidelines, v2.2021)¹⁷⁶⁻¹⁷⁹, and low-grade osteosarcomas, including parosteal osteosarcomas and low-grade central osteosarcomas as opposed to conventional high-grade osteosarcoma (NCCN Soft Tissue Sarcoma Guidelines, v2.2021)^{163-165,180-181}.

CCND3

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies — Amplification or activation of CCND3 may predict sensitivity to CDK4/6 inhibitors²³⁰⁻²³², such as abemaciclib, palbociclib, and ribociclib^{154-157,233-234}. As supported by strong preclinical studies, tumors with CCND3 activation depend on CDK4/6230-232.

FREQUENCY & PROGNOSIS

One study reported frequent high-level amplification of CCND3 in 83% (5/6) of aggressive osteosarcomas studied²³⁵. Another study reports consistent overexpression of CCND3 in all 13 osteosarcoma patient samples analyzed and gene amplification in 2 out of 4 samples, although overexpression was not correlated with increased cyclin D3 protein levels²³⁶. Increased expression of Cyclin D3 has been reported in bone and soft tissue sarcomas compared with leiomyomas and normal tissue, suggesting a role for this protein in bone and soft tissue tumors²³⁷. The prognostic significance of CCND₃ alteration in osteosarcoma have not been extensively studied (PubMed, Sep 2021).

FINDING SUMMARY

CCND3 encodes cyclin D3, a G1/S-specific cell cycle regulator. Cyclin D3 interacts with and regulates the cyclin-dependent kinases CDK4 and CDK6, resulting in the phosphorylation and inactivation of Rb and the progression of the cell cycle²³⁸. CCND3 amplification has been associated with increased cyclin D3 expression²³⁹.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Bone osteosarcoma

GENOMIC FINDINGS

ORDERED TEST #

^{gene} FRS2

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies that target alterations in FRS2. Amplification of FRS2 can lead to activation of the FGFR and MAPK-ERK pathways, and preliminary studies in liposarcoma cell lines have shown that cells with this alteration are sensitive to FGFR inhibitors^{175,240}.

gene KDR

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies — On the basis of clinical benefit for patients with ccRCC²⁴⁸⁻²⁵² and a patient with breast angiosarcoma²⁵³, high VEGFR-2 expression has been associated with sensitivity to sunitinib. However, because data supporting concordance between VEGFR-2 expression and KDR genomic biomarkers are limited, it is unclear whether these therapeutic strategies would be beneficial in this case. On the basis of extensive clinical evidence across multiple tumor types, expression of plasma or tumor VEGFR-1 or VEGFR-2 has not been

FREQUENCY & PROGNOSIS

FRS2 amplification is particularly prevalent in liposarcoma, where amplification of the 12q13-15 region of chromosome 12 is considered to be a hallmark genetic alteration, although the effects of amplification of CDK4 and MDM2, also located in this region, have been studied in more detail than FRS2 in this context²⁴¹⁻²⁴². Amplification of FRS2 has been observed in 93%-100% of dedifferentiated liposarcoma, 32% of undifferentiated high-grade pleomorphic sarcoma, and 100% of well-differentiated liposarcoma175,243. Amplification of the 12p15 chromosomal region containing FRS2, but not CDK4 or MDM2, was found in 12.5% of high-grade serous ovarian carcinomas, and knockdown of FRS2 in these cells resulted in apoptosis, indicating that cells with

established as a reliable biomarker to predict response to the VEGFA-targeted agent bevacizumab²⁵⁴⁻²⁷³.

FREQUENCY & PROGNOSIS

Relative to all tumor types analyzed, coamplification of KIT, KDR, and PDGFRA on the 4q12 locus has been reported to be enriched in osteosarcomas; although primarily bone-derived (6.4%; 27/420), 1 of 15 soft tissue osteosarcoma (extraskeletal) samples also harbored this amplicon83. KDR expression, mutation and amplification have been reported in various subtypes of sarcoma, most commonly in undifferentiated pleomorphic sarcoma of bone and angiosarcoma²⁷⁴. The Sarcoma Genome Project has reported KDR amplification in 2% of sarcoma samples¹⁷⁹. In the scientific literature, KDR mRNA expression has been reported in 67% of osteosarcoma specimens analyzed²⁷⁵. Another study reports frequent gain of KDR in

12p15 amplification require FRS2²⁴⁰.

FINDING SUMMARY

FRS2 encodes the fibroblast growth factor receptor (FGFR) substrate 2, an adaptor protein involved in FGFR signaling, which may also mediate signaling through EGFR, NTRK, and VEGF receptors²⁴⁴⁻²⁴⁷. FRS2 amplification was found to correlate with overexpression in highgrade serous ovarian tumors, and FRS2 overexpression promoted tumorigenesis in a preclinical study²⁴⁰.

pleomorphic sarcoma of bone¹⁴⁵. The prognostic significance of KDR amplification in osteosarcoma has not been extensively studied (PubMed, Feb 2021). One retrospective IHC analysis of 30 pediatric osteosarcoma samples reported significantly poorer metastasis-free survival for patients with high versus low KDR protein expression²⁷⁶.

FINDING SUMMARY

KDR encodes vascular endothelial growth factor receptor 2 (VEGFR2), a member of the vascular endothelial growth factor receptor (VEGFR) family. It is a receptor tyrosine kinase that transmits signals from VEGFA and is involved in both tumor angiogenesis and vasculogenesis during development²⁷⁷. KDR amplification has been reported in many tumor types and may be oncogenic²⁷⁷.

© 2021 Foundation Medicine, Inc. All rights reserved.

gene RAD21

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no therapies to target alterations in this gene.

FREQUENCY & PROGNOSIS

RAD21 amplifications, point mutations, and truncating mutations have been reported in various cancers²⁷⁸. In the context of breast cancer, increased RAD21 expression has been correlated with poor prognosis in multiple subtypes²⁷⁹⁻²⁸⁰, including sporadic Grade 3 but not Grade 1 cancers²⁷⁹, as well as hereditary BRCA2-mutant

and hereditary BRCA-wild-type but not hereditary BRCA1-mutant cancers²⁷⁹. Furthermore, SNPs in or near RAD21 have been linked with risk of breast cancer development²⁸¹⁻²⁸². RAD21 overexpression has also been correlated with poor prognosis in endometrial cancer²⁸³ and in colorectal cancer (CRC), especially in KRASmutant CRC²⁸⁴. Heterogeneity of RAD21 expression also correlated with aggressive tumor behavior and shorter survival in endometrial cancer²⁸⁵. RAD21 amplification has been more frequently reported in hormone-refractory than in treatment-naïve prostate cancer, but RAD21 amplification did not correlate with expression²⁸⁶. In the context of ovarian cancer, both RAD21 overexpression and downregulation have been observed, but RAD21 expression was not prognostic²⁸⁷. Downregulation of RAD21 expression resulted in sensitization of cultured breast^{280,288} and CRC²⁸⁴ cells to chemotherapy, thereby suggesting that RAD21 overexpression confers resistance to chemotherapy.

PATIENT

TUMOR TYPE Bone osteosarcoma

GENOMIC FINDINGS

FINDING SUMMARY

RAD21 encodes a protein involved in DNA doublestrand break repair and sister chromatid cohesion as a part of the cohesin complex²⁸⁹⁻²⁹². In preclinical studies, downregulation of RAD21 or other cohesin components leads to loss of expression from amplified genes, as well as amplifications themselves upon cell passaging²⁹³, but also leads to an increase in deletions, insertions, and other rearrangements²⁹⁴. High RAD21 expression has also been associated with increased genomic instability²⁷⁹. Cohesin complex also organizes chromatin domains and regulates gene expression²⁹⁵⁻²⁹⁶. Both overexpression and reduction of expression of RAD21 has been reported to alter gene expression²⁹⁷. RAD21 amplification has been correlated with increased expression in breast^{279-280,298} and endometrial²⁸³ cancers. Other RAD21 alterations, including truncating and point mutations, have been reported in the context of cancer, but the majority have not been characterized.

© 2021 Foundation Medicine, Inc. All rights reserved.

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib²⁹⁹⁻³⁰², or p53 gene therapy and immunotherapeutics such as SGT-53³⁰³⁻³⁰⁷ and ALT-801³⁰⁸. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% (17/ 176) and SDs in 53.4% (94/176) of patients with solid tumors; the response rate was 21.1% (4/19) for patients with TP53 mutations versus 12.1% (4/ 33) for patients who were TP53 wild-type309. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 31.9% (30/ 94, 3 CR) ORR and a 73.4% (69/94) DCR for patients with platinum-refractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer³¹⁰. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 42.9% (9/21, 1 CR) ORR and a 76.2% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer³¹¹. The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone³¹². In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/ or recurrent gastric cancer experienced a 24.0% (6/25) ORR with adavosertib combined with paclitaxel³¹³. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and

docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71.4% (5/7) response rate for patients with TP53 alterations³¹⁴. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75.0% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage³⁰⁷. Additionally, the combination of a CHK1 inhibitor and irinotecan reportedly reduced tumor growth and prolonged survival in a TP53-mutated, but not TP53-wildtype, breast cancer xenotransplant mouse model315 Missense mutations leading to TP53 inactivation may also be sensitive to therapies that reactivate mutated p53 such as APR-246316-318. In a Phase 1b trial for patients with p53-positive high-grade serous ovarian cancer, APR-246 combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR³¹⁹. ATR inhibitor treatment of chronic lymphocytic leukemia (CLL) cells with biallelic inactivation of TP53 suppressed cell viability, promoted DNA damage, and attenuated xenograft growth in preclinical studies³²⁰⁻³²¹; however, ATR inhibitors as monotherapy had little effect on these parameters in solid tumor models in other preclinical studies³²²⁻³²³. Therefore, it is unclear whether TP53 inactivation predicts sensitivity to ATR inhibition.

FREQUENCY & PROGNOSIS

Mutations of TP53 have been reported in 16% of bone tumors, including 25-50% of osteosarcomas (COSMIC, Sep 2021)^{143,324-325}. TP53 rearrangements affecting the 5' UTR have been identified as recurrent alterations in 11-55% of osteosarcomas (n = 11-215) and have been reported in the context of Li-Fraumeni syndrome³²⁶⁻³³⁰. Both TP53 alterations and increased expression of p53 have been reported to correlate with worse survival of patients with osteosarcoma^{324,331}.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in

GENOMIC FINDINGS

aggressive advanced cancers²²⁵. Alterations such as seen here may disrupt TP₅₃ function or expression³³²⁻³³⁶.

TUMOR TYPE

Bone osteosarcoma

POTENTIAL GERMLINE IMPLICATIONS

One or more of the TP53 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with Li-Fraumeni syndrome (ClinVar, Sep 2021)337. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers³³⁸⁻³⁴⁰, including sarcomas³⁴¹⁻³⁴². Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000³⁴³ to 1:20,000³⁴². For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30³⁴⁴. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion³⁴⁵⁻³⁵⁰. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy³⁴⁵⁻³⁴⁶. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease351. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH349,352-353. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

gene TP53

ALTERATION

NM_000546

1010G>A

TRANSCRIPT ID

CODING SEQUENCE EFFECT

R337H

TUMOR TYPE Bone osteosarcoma

GENOMIC FINDINGS

ORDERED TEST #

^{gene} ZNF703

ALTERATION amplification - equivocal

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no available targeted therapies to directly address ZNF703 alterations in cancer. One preclinical study suggested that ZNF703 expression in breast cancer cell lines is associated with reduced sensitivity to tamoxifen through AKT-mTOR activation³⁵⁴, although these findings have not been verified in the clinical setting.

FREQUENCY & PROGNOSIS

Amplification and high expression of ZNF703 has been observed in luminal B breast tumors, a subtype associated with aggressive disease progression and poor patient outcomes³⁵⁵⁻³⁵⁷. ZNF703 expression has also been linked with aggressive tumor characteristics in patients with gastric and colorectal cancers³⁵⁸⁻³⁵⁹. Putative highlevel amplification of ZNF703 has been reported with the highest frequency in breast carcinoma, bladder urothelial carcinoma, uterine carcinosarcoma, lung squamous cell carcinoma (SCC), esophageal carcinoma and head and neck SCC (5-13% of samples)(cBioPortal, 2021)^{87,201}.

FINDING SUMMARY

ZNF703 encodes a transcriptional repressor that plays roles in stem cell proliferation, cell cycle progression, and other key cellular functions^{356,360}. Amplification of ZNF703 has been correlated with protein expression³⁵⁵⁻³⁵⁶. ZNF703 was established as a breast cancer oncoprotein by studies showing that ZNF703 expression resulted in transformation and increased proliferation of cultured cells^{355-356,361}, as well as increased lung metastases in a breast cancer xenograft model³⁶¹.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

IN OTHER TUMOR TYPE

ORDERED TEST #

Imatinib

Assay findings association

KIT amplification

PDGFRA amplification

AREAS OF THERAPEUTIC USE

Imatinib targets the BCR-ABL fusion protein, PDGFR, and KIT. It is FDA approved for the treatment of KITpositive gastrointestinal stromal tumors (GIST), Ph+ chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL), myelodysplastic syndrome/ myeloproliferative syndrome (MDS/MPS), aggressive systemic mastocytosis without a D816V KIT mutation, hypereosinophilic syndrome and/or chronic eosinophilic leukemia, and dermatofibrosarcoma protuberans. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical and preclinical data in KIT-

mutated^{64-65,102,362}, KIT-amplified⁶³⁻⁶⁶, or KIT-expressing tumors^{68-73,363-364}, KIT activating alterations may confer sensitivity to imatinib. PDGFRA amplification may predict sensitivity to tyrosine kinase inhibitors such as imatinib; a patient with Merkel cell carcinoma expressing PDGFRA achieved a complete response to imatinib¹⁰⁰.

SUPPORTING DATA

THERAPIES WITH CLINICAL BENEFIT

A Phase 2 study of imatinib for children with refractory or relapsed solid tumors did not report any objective responses for the included osteosarcoma cases³⁶⁵. Genomically unselected patients with osteosarcoma experienced a 4-month progression-free survival rate of 18% (3/17) on imatinib³⁶⁶.

Nilotinib

Assay findings association

KIT amplification

AREAS OF THERAPEUTIC USE

Nilotinib targets tyrosine kinases such as ABL (including BCR-ABL), PDGFRs, KIT, CSF1R, DDR1, and DDR2. It is FDA approved to treat newly diagnosed pediatric or adult patients with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in chronic phase, adults with Ph+ CML in chronic or accelerated phase with resistance or intolerance to prior therapy including imatinib, and pediatric patients with Ph+ CML in chronic phase with resistance or intolerance to prior tyrosine-kinase inhibitor therapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical and preclinical data in KITmutated^{74,367-370}, KIT-amplified⁷⁴, or KIT-expressing tumors³⁷¹, KIT activating alterations may confer sensitivity to nilotinib.

SUPPORTING DATA

Clinical data on the efficacy of nilotinib for the treatment of bone sarcoma are limited (PubMed, Jun 2021). Nilotinib

has been primarily investigated as a therapeutic option for the treatment of CML or gastrointestinal stromal tumors (GIST). In the context of CML, a Phase 3 clinical trial of Ph+ patients treated with imatinib or nilotinib (300 mg or 400 mg) reported progression-free survival (PFS) rates of 93% and 97-98% and overall survival (OS) rates of 93% and 94-97%, respectively, at 4 years³⁷². For imatinibresistant Japanese patients with CML, a Phase 2 trial reported a 47.8% major medical response rate to treatment with nilotinib at 12 months³⁷³. A Phase 3 clinical trial of single-agent nilotinib in 240 patients with advanced GIST who failed prior treatment with imatinib or sunitinib reported no significant difference in progression-free survival between nilotinib and the best supportive care, but did report increased overall survival for nilotinibtreated patients³⁷⁴. A Phase 2 trial has shown that nilotinib was well tolerated and suggested it may be particularly useful for treating patients with GIST harboring mutations in KIT exon 17375. Preclinical, cellbased assays have reported efficacy for nilotinib alone and in combination with additional therapies in the context of leiomyosarcoma and synovial sarcoma³⁷⁶.

THERAPIES WITH CLINICAL BENEFIT

REPORT DATE

IN OTHER TUMOR TYPE

ORDERED TEST #

Sorafenib

Assay findings association

KIT amplification

AREAS OF THERAPEUTIC USE

Sorafenib is a kinase inhibitor that targets the RAF kinases, KIT, FLT₃, RET, VEGFRs, and PDGFRs. It is FDA approved for the treatment of unresectable hepatocellular carcinoma, advanced renal cell carcinoma, and recurrent or metastatic differentiated thyroid carcinoma. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical and preclinical data in KITmutated³⁷⁷⁻³⁸⁴ or KIT-expressing tumors⁷⁵⁻⁷⁸, KIT activating alterations may predict sensitivity to sorafenib.

SUPPORTING DATA

A retrospective study of osteosarcoma reported 3 SD in 4 patients treated with sorafenib³⁸⁵. Phase 2 studies in nonsmall cell lung cancer (NSCLC) report that single-agent sorafenib improved disease control rates and that the addition of sorafenib to erlotinib increased survival in EGFR wild-type patients³⁸⁶⁻³⁸⁷. A Phase 1 trial of everolimus combined with sorafenib reported 11% partial

responses and 77% stable disease388. In the context of small cell lung carcinoma, sorafenib combined with cisplatin plus etoposide was highly toxic and ineffective³⁸⁹. In HER2-negative breast cancer, Phase 2b trials found improved progression-free survival for sorafenib added to capecitabine, but not when added to paclitaxel³⁹⁰⁻³⁹¹. Phase 2 studies of sorafenib in biliary tract cancer reported disease control rates of 33-39%392. Three patients with cholangiocarcinoma derived clinical benefit from sorafenib³⁹³⁻³⁹⁴. However, the addition of sorafenib to gemcitabine did not improve outcome in patients with biliary tract tumors compared with gemcitabine alone³⁹⁵. A Phase 2 study of sorafenib and bicalutamide in castration-resistant prostate cancer (CRPC) observed a PSA response or stable disease (>6 months) in 47% (18/39) of patients³⁹⁶. Single-agent sorafenib was moderately active as second-line treatment for CRPC (3.7 months PFS and 18.0 months OS)397. For the treatment of glioblastoma or high-grade gliomas, sorafenib alone or combined with temozolomide/ radiotherapy or erlotinib did not show efficacy³⁹⁸⁻⁴⁰¹.

Sunitinib

Assay findings association

KIT amplification

AREAS OF THERAPEUTIC USE

Sunitinib is a small-molecule tyrosine kinase inhibitor that targets PDGFRs, VEGFRs, KIT, FLT3, CSF-1R, and RET. It is FDA approved for the treatment of advanced or metastatic pancreatic neuroendocrine tumors, gastrointestinal stromal tumors (GISTs) in patients who have progressed on or are intolerant to imatinib, and advanced renal cell carcinoma (RCC) as well as for the adjuvant treatment of patients at high risk of recurrent RCC after nephrectorny. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical and preclinical data in KITmutated^{79,402-406} or KIT-expressing tumors⁷⁹⁻⁸⁰, KIT activating alterations may predict sensitivity to sunitinib.

SUPPORTING DATA

A retrospective study of osteosarcoma reported 1 partial response and 1 stable disease in 5 patients treated with sunitinib³⁸⁵ and a patient with breast osteosarcoma did not report clinical benefit from sunitinib⁴⁰⁷. A preclinical study of osteosarcoma reported a significant reduction of tumor growth and vasculature in response to sunitinib⁴⁰⁸.

Phase 1 and 2 studies of sunitinib, alone or in combination with capecitabine, reported partial responses in patients with cancer of the biliary tract (6 responses), pancreas (3 responses), breast, thyroid, neuroendocrine, bladder, and large intestine (1 response each)409-410 . Partial responses have also been observed in patients with melanoma $(3/36)^{411}$ and were more frequent in melanomas with KIT mutation (3/4) than in melanomas with KIT amplification $(1/6)^{79}$. Sunitinib has been evaluated as maintenance therapy for non-small cell lung cancer (NSCLC)⁴¹². A Phase 3 study in NSCLC reported that sunitinib plus erlotinib was associated with better response rate and progression-free survival, as compared with erlotinib alone⁴¹³. Sunitinib has shown preliminary activity against soft tissue sarcomas⁴¹⁴⁻⁴¹⁵ and sunitinibinvolving regimens have provided significant benefit to at least 5 patients with angiosarcoma, including one complete response^{253,416-419}. In a Phase 2 study of patients with cervical carcinoma, no objective response to sunitinib was observed in 19 patients, but 84% (16/19) patients had stable disease420. In several Phase 2 trials of patients with glioblastoma, sunitinib did not achieve objective responses or improve clinical outcome $^{\rm 421-424}$.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

CLINICAL TRIALS

ORDERED TEST #

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial → Geographical proximity → Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

^{sene} CDK4	RATIONALE CDK4 amplification may predict sensitivity to	CDK4/6 inhibitors.
amplification		
NCT04801966		PHASE NULL
Safety and Oversight of the Individual	ly Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF
LOCATIONS: Melbourne (Australia)		
NCT02693535		PHASE 2
TAPUR: Testing the Use of Food and D Abnormality in a Tumor Gene in Peopl	rug Administration (FDA) Approved Drugs That Target a Specific e With Advanced Stage Cancer	TARGETS VEGFRS, ABL, SRC, ALK, AXL, MET, ROS1, TRKA, TRKC, CDK4, CDK6, CSF1R, FLT3, KIT, RET, mTOR, EGFR, ERBB2, ERBB3, MEK, BRAF, SMO, DDR2, PARP, PD-1, CTLA-4, ERBB4
	Georgia, Virginia, Alabama, Pennsylvania, New Hampshire, Maine	

NCT03994796	PHASE 2
Genetic Testing in Guiding Treatment for Patients With Brain Metastases	TARGETS ALK, ROS1, TRKA, TRKB, TRKC, CDK4, CDK6, PI3K, mTOR

LOCATIONS: Florida, North Carolina

NCT03310879	PHASE 2
Study of the CDK4/6 Inhibitor Abemaciclib in Solid Tumors Harboring Genetic Alterations in Genes Encoding D-type Cyclins or Amplification of CDK4 or CDK6	targets CDK4, CDK6
LOCATIONS: Massachusetts	

LOCATIONS: Massachusetts

ORDERED TEST #

NCT02896335	PHASE 2
Palbociclib In Progressive Brain Metastases	targets CDK4, CDK6
LOCATIONS: Massachusetts	
NCT03242382	PHASE 2
Phase II Multicenter Trial of Palbociclib in Second Line of Advanced Sarcomas With CDK4 Overexpression.	TARGETS CDK4, CDK6
LOCATIONS: Sevilla (Spain)	
NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, AXL, MET, ROS1, TRKA, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, CSF1R, FLT3, RET, mTOR, ERBB2, ERBB3, MEK, BRAF, SMO
LOCATIONS: Kingston (Canada), Montreal (Canada), Toronto (Canada), London (Canada), Ottawa (C Edmonton (Canada), Vancouver (Canada)	anada), Regina (Canada), Saskatoon (Canada),
NCT04040205	PHASE 2
Abemaciclib for Treatment of Advanced Bone and Soft Tissue Sarcoma Identified as Having CDK Pathway Alteration	targets CDK4, CDK6

LOCATIONS: Missouri, Wisconsin, Iowa

NCT04594005

CDK4/6 Tumor, Abemaciclib, Paclitaxel

LOCATIONS: Seoul (Korea, Republic of)

NCT03239015	PHASE 2
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB2, ERBB4, PARP, mTOR, MET, RET, ROS1, VEGFRs, BRAF, CDK4, CDK6

LOCATIONS: Shanghai (China)

PHASE 1/2

TARGETS CDK4, CDK6

DRDERED TEST #		CLINICAL TRIALS
GFR1	RATIONALE FGFR inhibitors may be relevant in tumors with	alterations that activate FGFR1.
ITERATION Implification - equivocal		
NCT02549937		PHASE 1/2
A Multi-Center, Open-Label Stuc	dy of Sulfatinib(HMPL-012) in Patients With Advanced Solid Tumors	TARGETS CSF1R, FGFR1, VEGFRs
LOCATIONS: Florida, Virginia, N	ew York, Tennessee, Texas, Wisconsin, Colorado, Milano (Italy), Califo	rnia
NCT04042116		PHASE 1/2
A Study to Evaluate Lucitanib in	Combination With Nivolumab in Patients With a Solid Tumor	TARGETS FGFRs, VEGFRs, PD-1
LOCATIONS: Florida, North Card	olina, New York, Massachusetts, Tennessee, Pennsylvania, Ohio, Cordo	ba (Spain), Madrid (Spain), Oklahoma
NCT04565275		PHASE 1/2
A Study of ICP-192 in Patients W	ith Advanced Solid Tumors	targets FGFR1, FGFR2, FGFR3, FGFR4
LOCATIONS: Florida, Minnesota	a, Arizona, Colorado	
NCT04784247		PHASE 2
Lenvatinib and Pembrolizumab i	n People With Advanced Soft Tissue Sarcoma	TARGETS FGFRs, KIT, PD-1, PDGFRA, RET, VEGFRs
LOCATIONS: New Jersey, New Y	/ork	
NCT04729348		PHASE 2
Pembrolizumab And Lenvatinib	In Leptomeningeal Metastases	TARGETS FGFRs, KIT, PD-1, PDGFRA, RET, VEGFRs
LOCATIONS: Massachusetts		
NCT02272998		PHASE 2
Ponatinib for Patients Whose Ac Following Genes: FGFR1, FGFR2, I	Ivanced Solid Tumor Cancer Has Activating Mutations Involving the FGFR3, FGFR4, RET, KIT.	TARGETS ABL, FGFRs, FLT3, KIT, RET, VEGFRs
LOCATIONS: Ohio		

ORDERED TEST #

CLINICAL TRIALS

NCT04169672	PHASE 2
Study of Surufatinib Combined With Toripalimab in Patients With Advanced Solid Tumors	targets CSF1R, FGFR1, VEGFRs, PD-1
LOCATIONS: Beijing (China), Shanghai (China)	
NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, KIT, PDGFRA, RET, VEGFRs, MEK
LOCATIONS: Guangzhou (China)	
NCT03564691	PHASE 1
Study of MK-4830 as Monotherapy and in Combination With Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-4830-001)	TARGETS ITL4, FGFRs, KIT, PDGFRA, RET, VEGFRs, PD-1
LOCATIONS: Cape Town (South Africa), Johannesburg (South Africa), Durban (South Africa), New Toronto (Canada), Ottawa (Canada)	York, New Jersey, Ohio, Texas, Hamilton (Canada),
NCT02856425	PHASE 1
Trial Of Pembrolizumab And Nintedanib	TARGETS FGFR1, FGFR2, FGFR3, FLT3, LCK, LYN, SRC, VEGFRs, PD-1
LOCATIONS: Villejuif (France)	

TUMOR TYPE Bone osteosarcoma

CLINICAL TRIALS

ORDERED TEST #

GENE

KIT

RATIONALE

KIT amplification or activating mutations may predict sensitivity to small molecule tyrosine kinase inhibitors. Also, because KIT activation leads to activation of the PI₃K-AKT-mTOR pathway, PI₃K and mTOR pathway inhibitors may be relevant in a tumor with KIT activation.

ALTERATION amplification

NCT03277924

Trial of Sunitinib Plus Nivolumab After Standard Treatment in Advanced Soft Tissue and Bone Sarcomas

PHASE 1/2

TARGETS PD-1, CSF1R, FLT3, KIT, RET, VEGFRs

LOCATIONS: La Laguna (Spain), Sevilla (Spain), Madrid (Spain), Valencia (Spain), Zaragoza (Spain), Barcelona (Spain), Candiolo (Italy), Milano (Italy)

NCT04449549	PHASE 2
Rapid Analysis and Response Evaluation of Combination Anti-Neoplastic Agents in Rare Tumors (RARE CANCER) Trial: RARE 1 Nilotinib and Paclitaxel	TARGETS ABL, KIT
LOCATIONS: Maryland	
NCT03711058	PHASE 1/2
Study of PI3Kinase Inhibition (Copanlisib) and Anti-PD-1 Antibody Nivolumab in Relapsed/Refractory Solid Tumors With Expansions in Mismatch-repair Proficient (MSS) Colorectal Cancer	targets PD-1, PI3K
LOCATIONS: Maryland	
NCT04784247	PHASE 2
Lenvatinib and Pembrolizumab in People With Advanced Soft Tissue Sarcoma	TARGETS FGFRs, KIT, PD-1, PDGFRA, RET, VEGFRs
LOCATIONS: New Jersey, New York	
NCT04729348	PHASE 2
Pembrolizumab And Lenvatinib In Leptomeningeal Metastases	TARGETS FGFRs, KIT, PD-1, PDGFRA, RET, VEGFRs
LOCATIONS: Massachusetts	

CLINICAL TRIALS

NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, AXL, MET, ROS1, TRKA, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, CSF1R, FLT3, RET, mTOR, ERBB2, ERBB3, MEK, BRAF, SMO

LOCATIONS: Kingston (Canada), Montreal (Canada), Toronto (Canada), London (Canada), Ottawa (Canada), Regina (Canada), Saskatoon (Canada), Edmonton (Canada), Vancouver (Canada)

NCT04803318	PHASE 2
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, KIT, PDGFRA, RET, VEGFRs, MEK
LOCATIONS: Guangzhou (China)	
NCT02461849	PHASE 2
Patients With Refractory, Metastatic Cancer Harboring KIT Mutation or Amplification to Investigate the Clinical Efficacy and Safety of Imatinib Therapy	targets KIT, ABL
LOCATIONS: Seoul (Korea, Republic of)	
NCT03564691	PHASE 1
Study of MK-4830 as Monotherapy and in Combination With Pembrolizumab (MK-3475) in Participants With Advanced Solid Tumors (MK-4830-001)	TARGETS ITL4, FGFRs, KIT, PDGFRA, RET, VEGFRs, PD-1

LOCATIONS: Cape Town (South Africa), Johannesburg (South Africa), Durban (South Africa), New York, New Jersey, Ohio, Texas, Hamilton (Canada), Toronto (Canada), Ottawa (Canada)

NCT03502733	PHASE 1
Copanlisib and Nivolumab in Treating Patients With Metastatic Solid Tumors or Lymphoma	targets PI3K, PD-1
LOCATIONS: Maryland, Texas	

© 2021 Foundation Medicine, Inc. All rights reserved.

CLINICAL TRIALS

ORDERED TEST #

MDM2

ALTERATION amplification

GENE

RATIONALE

Inhibitors of the MDM2-p53 interaction are being tested in clinical trials. Overexpression or

amplification of MDM2 may increase sensitivity to these agents, but more data are required.

NCT03611868

A Study of APG-115 in Combination With Pembrolizumab in Patients With Metastatic Melanomas or Advanced Solid Tumors

PHASE 1/2

TARGETS MDM2, PD-1

LOCATIONS: Florida, Virginia, District of Columbia, Pennsylvania, New York, Tennessee, Texas, Missouri

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

© 2021 Foundation Medicine, Inc. All rights reserved.

CLINICAL TRIALS

LTEARINg Influenzami and Inatinib Mesylate in Advanced Cance Lotrones: Tota	^{BENE} PDGFRA	RATIONALE PDGFRA amplification may predict sensitivity to	imatinib and to anti-PDGFRA antibodies.
Iplinumab and Imatinib Mesylate in Advanced Cancer ELT, ABL, CTLA-4 LOCATIONS: Teas	LTERATION		
LOCATIONE: Texas	NCT01738139		PHASE 1
	pilimumab and Imatinib Mesylate in A	Advanced Cancer	
	OCATIONS: Texas		
© 2021 Foundation Medicine, Inc. All rights Fest			

ORDERED TEST #

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

FLCN H		INPP4B	KDM5A
T22M a		V594A	P1237H
NCOR2	RICTOR	SOX10	WT1
	R1202fs*4	E359D	amplification
Q510_P511insQQQQ	R1202fs*4	E359D	amplification

© 2021 Foundation Medicine, Inc. All rights reserved.

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

APPENDIX

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

SUBSTITUTIONS	, INSERTION/DEL	ETIONS, AND CO	PY NUMBER ALT	ERATIONS				
ABL1	АСТВ	AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B o	r WTX)	APC
APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)		ARID1A	ARID2	ASMTL
ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL	B2M
BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A	BCOR
BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BRSK1
BTG2	ВТК	BTLA	C11orf30 (EMSY)	CAD	CALR*	CARD11	CBFB	CBL
CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274 (PD-L1)	CD36	CD58
CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6	CDK8
CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	СНЕК2	CIC
CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2	DNMT3A
DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR	ELP2
EP300	ЕРНАЗ	EPHA5	EPHA7	ЕРНВ1	ERBB2	ERBB3	ERBB4	ERG
ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FAM46C	FANCA	FANCC
FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31	FBXW7
FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2
FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1	FOXL2
FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3	GID4 (C17orf39)
GNA11	GNA12	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG
HIST1H2AL	HIST1H2AM	HIST1H2BC		НІЅТ1Н2ВК	HIST1H2BO	HIST1H3B	HNF1A	HRAS
HSP90AA1	ICK	ID3	IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2
IKZF3	IL7R	INHBA	INPP4B	INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2
JAK1	JAK2	JAK3	JARID2	JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A
KDM5C	KDM6A	KDR	KEAP1	КІТ	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)
KRAS	LEF1	LRP1B	LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1
MAP2K2	MAP2K4	MAP3K1	МАРЗК14	МАРЗК6	МАРЗК7	MAPK1	MCL1	MDM2
MDM4	MED12	MEF2B		MEN1	MET	MIB1	MITF	MKI67
MLH1	MPL	MRE11A		MSH3	MSH6	MTOR	МИТҮН	МҮС
MYCL (MYCL1)	MYCN	MYD88	MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2
NFKBIA	NKX2-1	NOD1	NOTCH1	NOTCH2	NPM1	NRAS	NT5C2	NTRK1
NTRK2	NTRK3	NUP93	NUP98	P2RY8	PAG1	РАКЗ	PALB2	PASK
PAX5	PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)	PDGFRA
PDGFRB	PDK1	PHF6	РІКЗСА	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TET2	TGFBR2	TLL2	ТМЕМЗОА	
TMSB4XP8 (TMSL3		TNFAIP3	-	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5		TSC2	TSHR	TUSC3	TYK2	U2AF1
U2AF2	VHL	WDR90	WHSC1 (MMSET or		WISP3	WT1	XBP1	XPO1
YY1AP1	ZMYM3	ZNF217	ZNF24 (ZSCAN3)		ZRSR2			

© 2021 Foundation Medicine, Inc. All rights reserved.

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

APPENDIX Genes Assayed in FoundationOne®Heme

*Note: the assay was updated on 11/8/2016 to include the detection of alterations in CALR

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: FOR THE DETECTION OF SELECT REARRANGEMENTS								
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	МҮС	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGIC		RNA GENE LIST	FOR THE DETEC	TION OF SELECT	REARRANGEME	NTS		
ABI1	ABL1	ABL2	ACSL6	AFF1	AFF4	ALK	ARHGAP26 (GRAF	
ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC	BCL10	BCL11A
BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR	BCR	BIRC3
BRAF	BTG1	CAMTA1	CARS	CBFA2T3	CBFB	CBL	CCND1	CCND2
CCND3	CD274 (PD-L1)	CDK6	CDX2	CHIC2	CHN1	CIC	CIITA	CLP1
CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2	CREBBP	CRLF2	CSF1
CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22	EGFR	EIF4A2	ELF4
ELL	ELN	EML4	EP300	EPOR	EPS15	ERBB2	ERG	ETS1
ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B	FCRL4	FEV	FGFR1
FGFR1OP	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3	FOXO4	FOXP1
FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	HERPUD1	HEY1	HIP1
HIST1H4I	HLF	HMGA1	HMGA2	HOXA11	HOXA13	НОХАЗ	нохая	HOXC11
HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK	IGL	IKZF1
IL21R	IL3	IRF4	ІТК	JAK1	JAK2	JAK3	JAZF1	KAT6A (MYST3)
KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2	LPP	LYL1
MAF	MAFB	MALT1	MDS2	месом	MKL1	MLF1	MLLT1 (ENL)	MLLT10 (AF10)
MLLT3	MLLT4 (AF6)	MLLT6	MN1	MNX1	MSI2	MSN	MUC1	МҮВ
МҮС	MYH11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1	NF2
NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NTRK1	NTRK2	NTRK3
NUMA1	NUP214	NUP98	NUTM2A	OMD	P2RY8	PAFAH1B2	PAX3	PAX5
PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)	PDE4DIP	PDGFB	PDGFRA	PDGFRB
PER1	PHF1	PICALM	PIM1	PLAG1	PML	POU2AF1	PPP1CB	PRDM1
PRDM16	PRRX1	PSIP1	PTCH1	РТК7	RABEP1	RAF1	RALGDS	RAP1GDS1
RARA	RBM15	RET	RHOH	RNF213	ROS1	RPL22	RPN1	RUNX1
RUNX1T1 (ETO)	RUNX2	SEC31A	SEPT5	SEPT6	SEPT9	SET	SH3GL1	SLC1A2
SNX29 (RUNDC2)	A) SRSF3	SS18	SSX1	SSX2	SSX4	STAT6	STL	SYK
TAF15	TAL1	TAL2	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3
TFG	TFPT	TFRC	TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63
ТРМЗ	TPM4	TRIM24	TRIP11	TTL	ΤΥΚ2	USP6	WHSC1 (MMSET o	or NSD2)
WHSC1L1	YPEL5	ZBTB16	ZMYM2	ZNF384	ZNF521			

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS Microsatellite (MS) status

Tumor Mutational Burden (TMB)

© 2021 Foundation Medicine, Inc. All rights reserved.

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 • CLIA: 22D2027531 Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 • CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 • CLIA: 22D2027531

ORDERED TEST #

APPENDIX Perform

Performance Specifications

The median exon coverage for this sample is 664x				
ACCURACY				
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%		
Sensitivity: Insertions/Deletions (1-40bp)	At≥10% Minor Allele Frequency	98.0%		
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At≥8 copies	>95.0%		
Sensitivity: Microsatellite Instability-High (MSI-H) status	Positive Predictive Agreement (PPA)	100.0% (87.54%-100.00%)*		
Sensitivity: Microsatellite Stable (MSS) status	Positive Predictive Agreement (PPA)	89.66% (81.50%, 94.46%)*		
Sensitivity: Known Gene Fusions	>95.0%			
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%		
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%		
Specificity: Microsatellite Instability-High (MSI-H) status	Negative Predictive Agreement (NPA)	97.44% (91.12%-99.29%)*		
Specificity: Microsatellite Stable (MSS) status	Negative Predictive Agreement (NPA)	94.44% (86.57%, 97.82%)*		
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%		
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision			

* 95% Confidence Interval

Assay specifications were determined for pical median exon coverage of approximately 500X. For additional information regarding the validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct, 20).

In the fractional-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the FoundationOne Heme assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator

assay using a pan-tumor sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2021 Foundation Medicine, Inc. All rights reserved.

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

ABOUT FOUNDATIONONE HEME

FoundationOne®Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials, and quantitative markers that may support immunotherapy clinical trial enrollment. FoundationOne Heme is analytically validated to detect all classes of genomic alterations in more than 400 cancer-related genes. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across more than 250 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls

(Equivocal and Subclonal)

PATIENT

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification \rightarrow Geographical proximity \rightarrow Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK* (NCCN*) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2021. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source

Bone osteosarcoma

TUMOR TYPE

APPENDIX

About FoundationOne®Heme

or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

© 2021 Foundation Medicine, Inc. All rights reserved.

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

CE

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-**UP GERMLINE TESTING**

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT **CLONAL HEMATOPOIESIS**

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2),

MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

MR Suite Version 5.2.0

REPORT DATE Bone osteosarcoma

APPENDIX

TUMOR TYPE

About FoundationOne®Heme

- 1. Histopathology (2007) pmid: 17204026
- 2. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 3. Overman MJ, et al. Lancet Oncol. (2017) pmid: 28734759
- 4. Overman MJ, et al. J. Clin. Oncol. (2018) pmid: 29355075
- 5. Lipson EJ, et al. Clin. Cancer Res. (2013) pmid: 23169436
- Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 7. Rizvi NA, et al. Science (2015) pmid: 25765070
- 8. Oaknin A, et al. JAMA Oncol (2020) pmid: 33001143
- 9. Hochster et al., 2017; ASCO Abstract 673
- 10. Fleming et al., 2018; ASCO Abstract 5585
- 11. Bang et al., 2018; ASCO Abstract 92
- 12. Heinsohn S, et al. Int. J. Oncol. (2007) pmid: 17390023
- 13. Belchis DA, et al. Diagn. Mol. Pathol. (1996) pmid: 8866236
- 14. Suwa K, et al. J Orthop Sci (1999) pmid: 10370164
- 15. Entz-Werlé N, et al. J. Clin. Oncol. (2005) pmid: 15800315
- 16. Tarkkanen M, et al. Br. J. Cancer (1996) pmid: 8695363
- 17. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 18. You JF, et al. Br. J. Cancer (2010) pmid: 21081928 19. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid:
- 24623249 20. Lynch HT, et al. Clin. Genet. (2009) pmid: 19659756
- 21. Pande M, et al. Fam. Cancer (2012) pmid: 22714864
- 22. Kastrinos F, et al. Semin. Oncol. (2007) pmid: 17920897
- 23. Silva FC, et al. Sao Paulo Med J (2009) pmid: 19466295
- 24. Sehgal R, et al. Genes (Basel) (2014) pmid: 24978665
- 25. Fam. Cancer (2005) pmid: 16136383
- 26. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 27. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid:
- 28. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 29. Cristescu R, et al. Science (2018) pmid: 30309915
- 30. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 31. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 32. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 33. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 34. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 35. Sharma P, et al. Cancer Cell (2020) pmid: 32916128 36. Marabelle A, et al. Lancet Oncol. (2020) pmid:
- 32919526
- 37. Legrand et al., 2018; ASCO Abstract 12000 38. Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 39. Lim J, et al. Clin. Cancer Res. (2015) pmid: 26330427
- 40. Brohl AS, et al. PLoS Genet. (2014) pmid: 25010205
- 41. Chen X, et al. Cancer Cell (2013) pmid: 24332040
- 42. Xie L, et al. Front Oncol (2020) pmid: 33898301
- 43. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635 44. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 45. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 46. Johnson BE, et al. Science (2014) pmid: 24336570
- 47. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 48. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 49. Briggs S, et al. J. Pathol. (2013) pmid: 23447401 50. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid:
- 24583393
- 51. Nature (2012) pmid: 22810696
- 52. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919

Foundation Medicine, Inc. | 1.888.988.3639

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309

- 53. Evans EK, et al. Sci Transl Med (2017) pmid: 29093181 54. Abbaspour Babaei M, et al. Drug Des Devel Ther (2016)
- pmid: 27536065 55. Ramaswamy A, et al. J Gastrointest Oncol (2016) pmid: 27563456
- 56. Demetri GD, et al. Lancet (2013) pmid: 23177515
- 57. Gotlib J, et al. N. Engl. J. Med. (2016) pmid: 27355533
- Jawhar M, et al. Blood (2017) pmid: 28424161

PATIENT

TUMOR TYPE

19735261

18950453

16856885

pmid: 19910029

pmid: 16845659

pmid: 24057647

18794084

17087936

21254299

22090362

27542767

23157309

Bone osteosarcoma

106. Ikezoe T. et al. Leuk. Res. (2010) pmid: 20303172

107. Intermesoli T, et al. Br. J. Haematol. (2009) pmid:

109. Jovanovic JV, et al. Blood (2007) pmid: 17299092

110. Kang HJ, et al. Acta Oncol (2012) pmid: 22150077

112. Kobayashi M, et al. Respirology (2009) pmid: 19192229

113. Kocáková I, et al. Klin Onkol (2014) pmid: 24635438

115. Murayama Y, et al. World J Gastrointest Oncol (2012) pmid: 22645636

116. Ogbogu PU, et al. J. Allergy Clin. Immunol. (2009)

117. Ohnishi H, et al. Br. J. Haematol. (2006) pmid:

118. Pardanani A, et al. Blood (2003) pmid: 12842979

119. Pardanani A, et al. Blood (2004) pmid: 15284118

120. Qu SQ, et al. Oncotarget (2016) pmid: 27120808

121. Score J, et al. Leukemia (2006) pmid: 16498388

122. Shah S, et al. J Hematol Oncol (2014) pmid: 24669761

123. Sugimoto Y, et al. Cancer Genet (2015) pmid: 26319757 124. Volz HC, et al. Int. J. Cardiol. (2011) pmid: 20609486

125. von Bubnoff N, et al. Leukemia (2005) pmid: 15618966

127. Yoo C, et al. Cancer Res Treat (2016) pmid: 26130666

126. Walz C, et al. Genes Chromosomes Cancer (2006)

128. Al-Riyami AZ, et al. Leuk. Lymphoma (2013) pmid:

130. Lierman E. et al. Leukemia (2009) pmid: 19212337

131. Metzgeroth G, et al. Leukemia (2012) pmid: 21818111

132. Roubaud G, et al. Ann. Oncol. (2012) pmid: 22294526

134. Hochhaus A, et al. J. Cancer Res. Clin. Oncol. (2013)

135. Tabouret E, et al. Leuk. Res. (2011) pmid: 20832858

136. Dewaele B, et al. Clin. Cancer Res. (2008) pmid:

137. Weisberg E, et al. Gastroenterology (2006) pmid:

141. Jaku et al., 2017; ASCO Abstract 2515

144. Kubo T, et al. Cancer (2008) pmid: 18338812

138. Brohl AS, et al. Clin Sarcoma Res (2015) pmid: 26396737

139. Grellety T, et al. Future Sci OA (2015) pmid: 28031906

140. Kollàr A, et al. Clin Sarcoma Res (2014) pmid: 25905001

142. Sulzbacher I, et al. Pathology (2010) pmid: 21080877

143. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878

145. Niini T, et al. Genes Chromosomes Cancer (2011) pmid:

146. Andrae J, et al. Genes Dev. (2008) pmid: 18483217

147. Burford A, et al. PLoS ONE (2013) pmid: 23990986

148. Flavahan WA, et al. Nature (2016) pmid: 26700815

150. Verhaak RG, et al. Cancer Cell (2010) pmid: 20129251

152. Phillips JJ, et al. Brain Pathol. (2013) pmid: 23438035

153. Puget S, et al. PLoS ONE (2012) pmid: 22389665

155. Flaherty KT, et al. Clin. Cancer Res. (2012) pmid:

157. Infante JR, et al. Clin. Cancer Res. (2016) pmid:

158. Dickson et al., 2019; ASCO Abstract 11004

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

151. Koschmann C, et al. Oncotarget (2016) pmid: 27582545

154. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312

156. Patnaik A, et al. Cancer Discov (2016) pmid: 27217383

159. Dickson MA, et al. JAMA Oncol (2016) pmid: 27124835

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

© 2021 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 27 Of 29

149. Roszik J, et al. Sci Rep (2016) pmid: 26787600

133. von Bubnoff N, et al. Oncogene (2011) pmid: 20972453

129. Lierman E, et al. Blood (2006) pmid: 16645167

114. Metzgeroth G, et al. Br. J. Haematol. (2008) pmid:

108. Jain N. et al. Leuk. Res. (2009) pmid: 19013640

111. Klion AD, et al. Blood (2004) pmid: 14504092

APPENDIX

REPORT DATE

References

- 59. Xu X, et al. Int J Clin Exp Pathol (2014) pmid: 25031773
- 60. Gotlib J, et al. Blood (2005) pmid: 15972446
- 61. Si L, et al. J. Clin. Oncol. (2012) pmid: 22162580
- 62. Parikh SA, et al. Leuk Lymphoma (2010) pmid:
- 20038218
- 63. Wei X, et al. Oncol. Res. (2019) pmid: 30075827
- 64. Hodi FS, et al. J. Clin. Oncol. (2013) pmid: 23775962
- 65. Carvajal RD, et al. JAMA (2011) pmid: 21642685
- 66. Guo J, et al. J. Clin. Oncol. (2011) pmid: 21690468
- 67. Debiec-Rychter M, et al. Gastroenterology (2005)
- pmid: 15685537
- Dematteo RP, et al. Lancet (2009) pmid: 19303137 68.
- 69. Faivre S, et al. J. Clin. Oncol. (2005) pmid: 16135502
- 70. Hotte SJ, et al. J. Clin. Oncol. (2005) pmid: 15659505 71. Alcedo JC, et al. Head Neck (2004) pmid: 15350030
- 72. Brandwein JM, et al. Leukemia (2011) pmid: 21403650 73. Reardon DA, et al. Br. J. Cancer (2009) pmid: 19904263
- 74. Lee SJ, et al. Oncologist (2015) pmid: 26424760
- 75. Llovet JM, et al. Clin. Cancer Res. (2012) pmid: 22374331 76. Zhang HL, et al. Clin Genitourin Cancer (2013) pmid: 23058498
- 77. Seino S, et al. Gastroenterology (2014) pmid: 25450081
- 78. Li XF, et al. Med. Oncol. (2009) pmid: 18846437
- 79. Minor DR, et al. Clin. Cancer Res. (2012) pmid: 22261812
- 80. Mahipal A, et al. Melanoma Res. (2012) pmid: 23114504
- 81. Suehara Y, et al. Clin. Cancer Res. (2019) pmid: 31175097
- 82. Entz-Werle N, et al. Int. J. Cancer (2007) pmid: 17294449
- 83. Disel U, et al. Oncologist (2020) pmid: 31604903
- 84. Miiji LN, et al. Int J Clin Exp Pathol (2011) pmid: 22135725
- 85. Int. J. Biochem. Cell Biol. (1999) pmid: 10582339
- 86. Semin. Oncol. (2004) pmid: 15175998
- 87. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 88. Zack TI, et al. Nat. Genet. (2013) pmid: 24071852
- 89. Beroukhim R, et al. Nature (2010) pmid: 20164920
- 90. Arefi M, et al. Int. J. Hematol. (2012) pmid: 22806436
- 91. Baccarani M, et al. Haematologica (2007) pmid: 17666373
- 92. Cassier PA, et al. Clin. Cancer Res. (2012) pmid: 22718859
- 93. Chalmers ZR, et al. Blood Cancer J (2015) pmid: 25658984
- 94. Cools J, et al. N. Engl. J. Med. (2003) pmid: 12660384
- 95. Curtis CE, et al. Br. J. Haematol. (2007) pmid: 17555450 96. Debiec-Rychter M, et al. Eur. J. Cancer (2004) pmid:
- 15010069
- 97. Dileo P, et al. Int. J. Cancer (2011) pmid: 20473908
- 98. Fanta PT, et al. J. Clin. Oncol. (2015) pmid: 24638008
- 99. Florian S, et al. Leuk. Res. (2006) pmid: 16406018

102. Heinrich MC, et al. J. Clin. Oncol. (2003) pmid:

105. Hus M, et al. Leuk. Res. (2011) pmid: 21093052

14645423

100. Frenard C, et al. JAAD Case Rep (2016) pmid: 27051816 101. Griffin JH, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12808148

103. Helbig G, et al. Br. J. Haematol. (2009) pmid: 19120352

104. Helbig G, et al. Am. J. Hematol. (2014) pmid: 24009127

- 160. Peguero et al., 2016; ASCO Abstract 2528
- 161. Wei G, et al. Int. J. Cancer (1999) pmid: 9935200
- 162. Smida J, et al. Clin. Cancer Res. (2010) pmid: 20610556
- 163. Dujardin F, et al. Mod. Pathol. (2011) pmid: 21336260164. Mejia-Guerrero S, et al. Genes Chromosomes Cancer
- (2010) pmid: 20196171
- 165. Yoshida A, et al. Am. J. Surg. Pathol. (2012) pmid: 22301501
- 166. López-Guerrero JA, et al. Diagn. Mol. Pathol. (2004) pmid: 15167009
- 167. Benassi MS, et al. Int. J. Cancer (1999) pmid: 10502725
- 168. Choi YJ, et al. Oncogene (2014) pmid: 23644662
- 169. Cell (1995) pmid: 7736585
- 170. Musgrove EA, et al. Nat. Rev. Cancer (2011) pmid: 21734724
- 171. Wikman H, et al. Genes Chromosomes Cancer (2005) pmid: 15543620
- 172. Rao SK, et al. J. Neurooncol. (2010) pmid: 19609742
 173. Chung L, et al. Am. J. Surg. Pathol. (2009) pmid: 19574885
- 174. Ragazzini P, et al. Histol. Histopathol. (2004) pmid: 15024701
- **175.** Zhang K, et al. Cancer Res. (2013) pmid: 23393200
- 176. Horvai AE, et al. Mod. Pathol. (2009) pmid: 19734852
- 177. Oliner JD, et al. Nature (1992) pmid: 1614537
- 178. Kashima T, et al. Mod. Pathol. (2012) pmid: 22699518
- 179. Barretina J, et al. Nat. Genet. (2010) pmid: 20601955
- 180. Park HR, et al. Pathol. Res. Pract. (2004) pmid: 15310147
- **181.** Wunder JS, et al. Oncogene (1999) pmid: 9989829
- 182. Loriot Y, et al. N. Engl. J. Med. (2019) pmid: 31340094
- 183. Tabernero J, et al. J. Clin. Oncol. (2015) pmid: 26324363
 184. Karkera JD, et al. Mol. Cancer Ther. (2017) pmid: 28416604
- 185. Necchi et al., 2018: ESMO Abstract 900P
- **186.** Pal SK, et al. Cancer Discov (2018) pmid: 29848605
- **187.** Pal SK, et al. Cancer (2020) pmid: 32208524
- **188.** Schuler M, et al. Lancet Oncol. (2019) pmid: 31405822
- 189. Farouk Sait S, et al. JCO Precis Oncol (2021) pmid: 34250399
- **190.** Voss MH, et al. Clin. Cancer Res. (2019) pmid: 30745300
- **191.** Bahleda R, et al. Ann Oncol (2020) pmid: 32622884
- **192.** Papadopoulos KP, et al. Br. J. Cancer (2017) pmid: 28972963
- 193. Cheng FT, et al. J Natl Compr Canc Netw (2017) pmid: 29223982
- 194. Khodadoust MS, et al. Leukemia (2016) pmid: 26055304
- 195. Tanasi I, et al. Blood (2019) pmid: 31434701
- 196. Strati P, et al. Leuk. Lymphoma (2018) pmid: 29119847
- 197. Nogova L, et al. J. Clin. Oncol. (2017) pmid: 27870574
- 198. Aggarwal C, et al. J Thorac Oncol (2019) pmid: 31195180
- 199. Ware KE, et al. Oncogenesis (2013) pmid: 23552882
- 200. Terai H, et al. Mol. Cancer Res. (2013) pmid: 23536707
- 201. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 202. Guagnano V, et al. Cancer Discov (2012) pmid: 23002168
- 203. Lee JC, et al. Mod. Pathol. (2016) pmid: 27443518
- 204. Turner N, et al. Nat. Rev. Cancer (2010) pmid: 20094046
- 205. Kohler LH, et al. Virchows Arch. (2012) pmid: 22648708
- 206. Kim HR, et al. J. Clin. Oncol. (2013) pmid: 23182986
- 207. André F, et al. Lancet Oncol. (2014) pmid: 24508104
- 208. Dienstmann R, et al. Ann. Oncol. (2014) pmid: 24265351
- 209. Cheok CF, et al. Nat Rev Clin Oncol (2011) pmid: 20975744
- 210. Ohnstad HO, et al. Cancer (2013) pmid: 23165797
- **211.** Gamble LD, et al. Oncogene (2012) pmid: 21725357

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Foundation Medicine, Inc. | 1.888.988.3639

Shakti Ramkissoon, M.D., Ph.D., M.M. Sc, Laboratory Director CLIA: 34D2044309

213. Rasco et al., 2019; ASCO Abstract 3126 **214.** Tolcher et al., 2021; ASCO Abstract 2506

212. Zhang et al., 2019; ASCO Abstract 3124

215. Martinelli et al., 2016; EHA21 Abstract S504

PATIENT

TUMOR TYPE

Bone osteosarcoma

APPENDIX

265. Cameron D, et al. Lancet Oncol. (2013) pmid: 23932548

266. Mok T, et al. J Thorac Oncol (2014) pmid: 24807156

267. An SJ, et al. Cancer Gene Ther. (2014) pmid: 24577128

269. Cohen EE, et al. Lancet Oncol. (2009) pmid: 19201650

271. Lee EQ, et al. Clin. Cancer Res. (2018) pmid: 29941486

273. Heist RS, et al. Proc. Natl. Acad. Sci. U.S.A. (2015) pmid:

270. Van Cutsem E, et al. J. Clin. Oncol. (2012) pmid:

272. Xu L, et al. Cancer Res. (2009) pmid: 19826039

274. Biochem. Pharmacol. (2012) pmid: 22387046

276. Negri GL, et al. J Pathol (2019) pmid: 31236944

278. Zehir A, et al. Nat. Med. (2017) pmid: 28481359

279. Yan M, et al. Breast Cancer Res. (2012) pmid: 22537934

282. Sehl ME, et al. Clin. Cancer Res. (2009) pmid: 19276285

285. Supernat A, et al. Transl Oncol (2014) pmid: 25048628

286. Porkka KP, et al. Genes Chromosomes Cancer (2004)

283. Supernat A, et al. Oncol Lett (2012) pmid: 23205091

284. Deb S, et al. Br. J. Cancer (2014) pmid: 24548858

287. Davis SJ, et al. Mol. Cancer Ther. (2015) pmid:

288. Atienza JM, et al. Mol. Cancer Ther. (2005) pmid:

289. Xu H, et al. Nat. Rev. Cancer (2011) pmid: 21326324

290. Hill VK, et al. Biochim. Biophys. Acta (2016) pmid:

291. Solomon DA, et al. BMB Rep (2014) pmid: 24856830

292. Bauerschmidt C, et al. Nucleic Acids Res. (2010) pmid:

293. Yun J, et al. Nucleic Acids Res. (2016) pmid: 26420833

294. Gelot C, et al. Nucleus (2016) pmid: 27326661

296. Deng Z, et al. EMBO J. (2012) pmid: 23010778

297. Yun J, et al. EMBO Rep. (2016) pmid: 27466323

298. Mahmood SF, et al. Carcinogenesis (2014) pmid:

300. Bridges KA, et al. Clin. Cancer Res. (2011) pmid:

302. Osman AA, et al. Mol. Cancer Ther. (2015) pmid:

304. Xu L, et al. Mol. Med. (2001) pmid: 11713371

305. Camp ER, et al. Cancer Gene Ther. (2013) pmid:

299. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315

301. Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid:

303. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850

306. Kim SS, et al. Nanomedicine (2015) pmid: 25240597

307. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628

309. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554

311. Leijen S. et al. J. Clin. Oncol. (2016) pmid: 27998224

313. Lee J. et al. Cancer Discov (2019) pmid: 31315834

315. Ma CX, et al. J. Clin. Invest. (2012) pmid: 22446188

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

316. Lehmann S, et al. J. Clin. Oncol. (2012) pmid: 22965953

317. Mohell N, et al. Cell Death Dis (2015) pmid: 26086967

© 2021 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 28 Of 29

314. Méndez E, et al. Clin. Cancer Res. (2018) pmid:

308. Hajdenberg et al., 2012; ASCO Abstract e15010

310. Moore et al., 2019; ASCO Abstract 5513

312. Oza et al., 2015; ASCO Abstract 5506

295. Sofueva S, et al. EMBO J. (2013) pmid: 24185899

Stevens KN, et al. Breast Cancer Res. Treat. (2011) pmid:

280. Xu H, et al. Breast Cancer Res. (2011) pmid: 21255398

277. Biol. Pharm. Bull. (2011) pmid: 22130231

275. Lee YH, et al. Eur. J. Cancer (1999) pmid: 10533453

22565005

25605928

21607584

pmid: 14603436

25852062

15767545

27207471

19906707

24148822

21799033

21389100

25504633

23470564

29535125

281.

268. Bais C, et al. J. Natl. Cancer Inst. (2017) pmid: 29059426

REPORT DATE

References

- 216. Daver et al., 2018; ASH Abstract 767217. Mascarenhas et al., 2019; ASH Abstract 134
- **218.** Shustov et al., 2018; ASH Abstract 1623
- **219.** Sallman et al., 2018; ASH Abstract 4066
- 219. Maria Damatan et al. 2017: ACCO Abatua
- 220. Meric-Bernstam et al., 2017; ASCO Abstract 2505 221. Yoshida A, et al. Mod. Pathol. (2010) pmid: 20601938
- **222.** Sdek P, et al. Mol. Cell (2005) pmid: 16337594
- **223.** Brady M, et al. Mol. Cell. Biol. (2005) pmid: 15632057
- 225. Blady M, et al. Mol. Cell. Blol. (2005) plilid. 150
- 224. Li M, et al. Mol. Cell (2004) pmid: 15053880 225. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- 226. Cordon-Cardo C, et al. Cancer Res. (1994) pmid: 8306343
- 227. Kato S, et al. Clin. Cancer Res. (2017) pmid: 28351930
- 228. Singavi et al., 2017; ESMO Abstract 1140PD
- 229. Rizvi H, et al. J. Clin. Oncol. (2018) pmid: 29337640
- 230. Schmitz R, et al. Nature (2012) pmid: 22885699
- 231. Choi YJ, et al. Cancer Cell (2012) pmid: 23079655
- 232. Sawai CM, et al. Cancer Cell (2012) pmid: 23079656
- 233. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798
- **234.** DeMichele A, et al. Clin. Cancer Res. (2015) pmid: 25501126
- 235. Kanamori M, et al. J. Exp. Clin. Cancer Res. (2012) pmid: 23199169
- 236. Lu XY, et al. Mol. Cancer Res. (2008) pmid: 18567798
- 237. Bui MM, et al. In Vivo () pmid: 18019405
- 238. Sridhar J, et al. AAPS J (2006) pmid: 16584130
- **239.** Kasugai Y, et al. Clin. Cancer Res. (2005) pmid: 16322284
- 240. Luo LY, et al. Mol. Cancer Res. (2015) pmid: 25368431
- 241. Pilotti S, et al. J. Pathol. (1998) pmid: 9713346
- 242. Segura-Sánchez J, et al. Anticancer Res. () pmid: 17214366
- 243. Wang X, et al. Genes Chromosomes Cancer (2011) pmid: 21793095
- 244. Kanodia J, et al. Cell Commun. Signal (2014) pmid: 24885272
- 245. Wu Y, et al. Biol. Chem. (2003) pmid: 12974390
- 246. Chen PY, et al. Proc. Natl. Acad. Sci. U.S.A. (2014) pmid: 24706887
- 247. Yan KS, et al. J. Biol. Chem. (2002) pmid: 11877385
- 248. Beuselinck B, et al. Acta Oncol (2018) pmid: 29095068
- 249. Song Y, et al. Chin. Med. J. (2015) pmid: 26228213
- 250. Dornbusch J, et al. PLoS ONE (2013) pmid: 24086736
- 251. Terakawa T, et al. Urol. Oncol. (2013) pmid: 21478036
- 252. You D, et al. World J Urol (2015) pmid: 24710685
- 253. Silva E, et al. Breast J () pmid: 25639617
- 254. Baumgarten P, et al. Neuro-oncology (2016) pmid: 26627848
- 255. Sathornsumetee S, et al. J. Clin. Oncol. (2008) pmid: 18182667
- 256. Olafson LR, et al. J Clin Neurosci (2019) pmid: 31582283
- **257.** Duda DG, et al. Oncologist (2010) pmid: 20484123
- 258. Stremitzer S, et al. Mol. Cancer Ther. (2016) pmid: 27535973
- 259. Weickhardt AJ, et al. Br. J. Cancer (2015) pmid: 26125443
- 260. Kopetz S, et al. J. Clin. Oncol. (2010) pmid: 20008624
- 261. Miles DW, et al. Br. J. Cancer (2013) pmid: 23422754
- **262.** Fountzilas G, et al. Anticancer Res. (2011) pmid:

263. Gianni L, et al. J. Clin. Oncol. (2013) pmid: 23569311

264. Sánchez-Rovira P. et al. Clin Transl Oncol (2013) pmid:

21868552

23397155

- 318. Fransson Å, et al. J Ovarian Res (2016) pmid: 27179933
- 319. Gourley et al., 2016; ASCO Abstract 5571
- 320. Kwok M, et al. Blood (2016) pmid: 26563132
- 321. Boudny M, et al. Haematologica (2019) pmid: 30975914
- **322.** Dillon MT, et al. Mol. Cancer Ther. (2017) pmid: 28062704
- **323.** Middleton FK, et al. Cancers (Basel) (2018) pmid: 30127241
- 324. Tsuchiya T, et al. Cancer Genet. Cytogenet. (2000) pmid: 10942797
- 325. Ito M, et al. Clin. Cancer Res. (2011) pmid: 21159888
- **326.** Lorenz S, et al. Oncotarget (2016) pmid: 26672768
- **327.** Ribi S, et al. Oncotarget (2015) pmid: 25762628
- 328. Miller CW, et al. Cancer Res (1990) pmid: 2253237
- **329.** Chen X, et al. Cell Rep (2014) pmid: 24703847
- **330.** Chandar N, et al. Br J Cancer (1992) pmid: 1739619
- 331. Wu X, et al. Cancer Epidemiol (2012) pmid: 21890444
 332. Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid: 18410249
- 333. Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12826609
- 334. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- 335. Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- 336. Yamada H, et al. Carcinogenesis (2007) pmid: 17690113337. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid:
- 29165669 338. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- **339.** Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- Sorreir AD, et al. Mor Diagri The (2015) pind: 2555100
 Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- **341.** Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316 **342.** Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid:
- 19204208
- 343. Lalloo F, et al. Lancet (2003) pmid: 12672316
- 344. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713
- **345.** Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- **346.** Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 347. Xie M, et al. Nat. Med. (2014) pmid: 25326804348. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid:
- 28669404
- 349. Severson EA, et al. Blood (2018) pmid: 29678827
- 350. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 351. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320

Electronically signed by Eric Severson, M.D., Ph.D., M.M.Sc. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA:

22D2027531 | Shakti Ramkissoon, M.D., Ph.D., M.M. Sc. Laboratory Director CLIA: 34D2044309 Foundation

Roche Products (NZ) Ltd. 98 Carlton Gore Road, Newmarket, Auckland 1023. PO Box 109113, Newmarket, Auckland 1149. Tel: 0800 880 177 | APAC.foundation@roche.com | www.foundationmedicine.co.nz

352. Chabon JJ, et al. Nature (2020) pmid: 32269342 **353.** Razavi P, et al. Nat. Med. (2019) pmid: 31768066

Medicine, Inc. | 1.888.988.3639

M-NZ-00000593/OCT2022

354. Zhang X, et al. PLoS ONE (2013) pmid: 23991038355. Holland DG, et al. EMBO Mol Med (2011) pmid: 21337521

PATIENT

- 356. Sircoulomb F, et al. EMBO Mol Med (2011) pmid:
- 21328542 357. Reynisdottir I, et al. Cancer Med (2013) pmid: 24156016
- **358.** Yang G, et al. Oncol. Rep. (2014) pmid: 24481460
- **359.** Ma F, et al. Oncol. Rep. (2014) pmid: 25017610
- 360. Bazarov AV, et al. Breast Cancer Res. (2011) pmid: 21635707
- **361.** Slorach EM, et al. Genes Dev. (2011) pmid: 21317240
- **362.** Debiec-Rychter M, et al. Eur. J. Cancer (2006) pmid: 16624552
- 363. Kamenz T, et al. World J. Gastroenterol. (2006) pmid: 16570351
- 364. Wang YY, et al. Proc. Natl. Acad. Sci. U.S.A. (2005) pmid: 15650049
- **365.** Bond M, et al. Pediatr Blood Cancer (2008) pmid: 17262795
- 366. Chugh et al., 2004; ASCO Abstract 9001
- **367.** Carvajal RD, et al. Clin. Cancer Res. (2015) pmid: 25695690
- 368. Hochhaus A, et al. J. Cancer Res. Clin. Oncol. (2015) pmid: 26002753
- 369. Blay JY, et al. Lancet Oncol. (2015) pmid: 25882987
 370. Kajimoto N, et al. Int J Clin Exp Pathol (2015) pmid: 26722383
- **371.** Sako H, et al. PLoS ONE (2014) pmid: 25221952
- 372. Hughes TP, et al. Blood (2014) pmid: 24335106
- 373. Takahashi N, et al. Biomark Res (2014) pmid: 24650752
- 374. Reichardt P, et al. Ann. Oncol. (2012) pmid: 22357255
- 375. Cauchi C, et al. Cancer Chemother. Pharmacol. (2012) pmid: 22119758
- 376. Villar VH, et al. PLoS ONE (2012) pmid: 22662203
- 377. Quintás-Cardama A, et al. Nat Clin Pract Oncol (2008)
- pmid: 18936790
- 378. Bisagni G, et al. J Thorac Oncol (2009) pmid: 19461405
- **379.** Handolias D, et al. Br. J. Cancer (2010) pmid: 20372153
- 380. Dișel U, et al. Lung Cancer (2011) pmid: 20970876
- 381. Park SH, et al. Invest New Drugs (2012) pmid: 22270258
- 382. Catania C, et al. Onco Targets Ther (2014) pmid: 24855380
- 383. Guo T, et al. Clin. Cancer Res. (2007) pmid: 17699867
- 384. Hu S, et al. Mol. Cancer Ther. (2008) pmid: 18483300
- **385.** Penel-Page M, et al. BMC Cancer (2015) pmid: 26541413
- 386. Wakelee HA, et al. J Thorac Oncol (2012) pmid:
- 22982658
- **387.** Spigel DR, et al. J. Clin. Oncol. (2011) pmid: 21576636 **388.** You et al., 2016; ASCO Abstract 2532

389. Sharma N, et al. Invest New Drugs (2014) pmid: 24420556

TUMOR TYPE

Bone osteosarcoma

390. Baselga J, et al. J. Clin. Oncol. (2012) pmid: 22412143
391. Gradishar WJ, et al. Eur. J. Cancer (2013) pmid: 22954665

APPENDIX

REPORT DATE

References

- 392. Bengala C, et al. Br. J. Cancer (2010) pmid: 19935794
- 393. Qun W, et al. Hepatogastroenterology () pmid: 20698202
- 394. LaRocca RV, et al. J Gastrointest Cancer (2007) pmid: 19089671
- **395.** Moehler M, et al. Eur. J. Cancer (2014) pmid: 25446376 **396.** Beardsley EK, et al. Invest New Drugs (2012) pmid:
- 21785998 **397.** Aragon-Ching JB, et al. BJU Int. (2009) pmid: 19154507
- **398.** Reardon DA, et al. J. Neurooncol. (2011) pmid: 20443129
- **399.** Lee EQ, et al. Neuro-oncology (2012) pmid: 23099651
- 400. Peereboom DM, et al. Neuro-oncology (2013) pmid: 23328813
- **401.** Hottinger AF, et al. Br. J. Cancer (2014) pmid: 24786603 **402.** Heinrich MC, et al. J. Clin. Oncol. (2008) pmid:
- 402. Heinrich MC, et al. J. Clin. Orcol. (2008) pmla: 18955458
- **403.** Buchbinder El, et al. Cancer (2015) pmid: 26264378
- **404.** Reichardt P, et al. BMC Cancer (2016) pmid: 26772734 **405.** Hirai F, et al. Mol Clin Oncol (2016) pmid: 27073655
- **405.** Filiair, et al. Mol Clin Offeor (2010) prilit. 2707365
- **406.** Goemans BF, et al. Leuk. Res. (2010) pmid: 20435347 **407.** Guo W, et al. Oncol Lett (2016) pmid: 26870284
- 407. Guo W, et al. Oncor Lett (2010) phild. 20370284 408. Kumar RM, et al. Am J Cancer Res (2015) pmid: 26328246
- 409. Sweeney CJ, et al. J. Clin. Oncol. (2010) pmid: 20837944
- 410. Yi JH, et al. Eur. J. Cancer (2012) pmid: 22176869
- 411. Decoster et al., 2010; ASCO Abstract 8518
- **412.** Gervais R, et al. Lung Cancer (2011) pmid: 21680048 **413.** Scagliotti GV, et al. J. Clin. Oncol. (2012) pmid:
- 22564989
- **414.** Mahmood ST, et al. Int. J. Cancer (2011) pmid: 21154746
- **415.** George S, et al. J. Clin. Oncol. (2009) pmid: 19451429 **416.** Lu HJ, et al. Br. J. Dermatol. (2013) pmid: 23383874
- **417.** Eberst L, et al. BMC Cancer (2014) pmid: 25420707
- **418.** Simas A, et al. Case Rep Oncol (2010) pmid: 20740188
- **419.** Yoo C, et al. Sarcoma (2009) pmid: 19478954
- **420.** Mackay HJ, et al. Gynecol. Oncol. (2010) pmid:

424. Hutterer M, et al. Neuro-oncology (2014) pmid:

24311637

- 19740535 421. Pan E, et al. J. Neurooncol. (2012) pmid: 22832897
- **421.** Fail E, et al. J. Neurooncol. (2012) pinid. 22832897 **422.** Kreisl TN, et al. J. Neurooncol. (2013) pmid: 23086433
- **422.** Riesi TN, et al. J. Neurooncol. (2013) piniti. 25080455 **423.** Balaña C, et al. Target Oncol (2014) pmid: 24424564

© 2021 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 29 Of 29

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531