

TUMOR TYPE Lung non-small cell lung carcinoma (NOS) COUNTRY CODE EC REPORT DATE

ORDERED TEST #

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

PHYSICIAN

-
- 2
- 2

DISEASE Lung non-small cell lung carcinoma (NOS)
NAME
DATE OF BIRTH
SEX
MEDICAL RECORD #

	ORDERING PHYSICIAN
	MEDICAL FACILITY
	ADDITIONAL RECIPIENT
l	MEDICAL FACILITY ID
	PATHOLOGIST

- SPECIMEN SITE SPECIMEN ID SPECIMEN TYPE
 - DATE OF COLLECTION SPECIMEN RECEIVED

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 5 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

EGFR exon 19 deletion (E746_A750del) *APC* Y158fs*12 *FANCL* R68* *TSC1* G464fs*68 *ASXL1* G967del

7 Disease relevant genes with no reportable alterations: ALK, BRAF, ERBB2, KRAS, MET, RET, ROS1

Report Highlights

- Targeted therapies with NCCN categories of evidence in this tumor type: Afatinib (p. 2), Dacomitinib (p. 8), Erlotinib (p. 8), Gefitinib (p. 9), Osimertinib (p. 9)
- Evidence-matched **clinical trial options** based on this patient's genomic findings: (p. <u>11</u>)
- Variants that may represent **clonal hematopoiesis** and may originate from non-tumor sources: **ASXL1 G967del** (p. <u>6</u>)

BIOMARKER FINDINGS	THERAPY AND CLINICAL TRIAL IMPLICATIONS	
Microsatellite status - MS-Stable	No therapies or clinical trials. see Biomarker Findings section	
Tumor Mutational Burden - 5 Muts/Mb	No therapies or clinical trials. see Biomarker Findings section	
GENOMIC FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
EGFR - exon 19 deletion (E746_A750del)	Afatinib 1	none
	Dacomitinib 1	
	Erlotinib 1	
	Gefitinib 1	
10 Trials see p. <u>12</u>	Osimertinib 1	
APC - Y158fs*12	none	none
3 Trials see <i>p</i> . <u>11</u>		
FANCL - R68*	none	none
10 Trials see p. <u>14</u>		
TSC1 - G464fs*68	none	none
10 Trials see p. <u>16</u>		

NCCN category

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

© 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS) COUNTRY CODE EC

REPORT DATE

ORDERED TEST #

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS (CH)

Genomic findings below may include nontumor somatic alterations, such as CH. The efficacy of targeting such nontumor somatic alterations is unknown. This content should be interpreted based on clinical context. Refer to appendix for additional information on CH. р. <u>6</u>

ASXL1 - G967del

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

ASXL1 - G967del

р. <u>6</u>

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's turnor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's turnor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physicians should refer to approved prescribing information for all therapes.

Therapies contained in this report may have been approved by the US FDA.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

© 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

BIOMARKER FINDINGS

ORDERED TEST #

BIOMARKER Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

BIOMARKER

Tumor Mutational Burden

RESULT 5 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1²²⁻²⁴, anti-PD-1 therapies²²⁻²⁵, and combination nivolumab and ipilimumab²⁶⁻³¹. Multiple clinical trials of PD-1- or PD-L1-targeting immune checkpoint inhibitors or combination of PD-1 and CTLA-4 inhibitors in NSCLC have reported that patients with tumors harboring TMB ≥10 Muts/Mb derive greater clinical benefit from these therapies than those with TMB <10 Muts/Mb (based on this assay or others); similarly, higher efficacy of anti-PD-1 or anti-PD-L1 immunotherapy for treatment of patients with NSCLC, compared with the use of chemotherapy, has been observed more significantly in cases of TMB ≥10 Muts/Mb (based on this assay or others);^{22-23,26-28,32-39}. Improved OS of patients with NSCLC treated with pembrolizumab plus chemotherapy relative to chemotherapy only⁴⁰, or those treated with nivolumab plus ipilimumab

experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

MSI-H is generally infrequent in NSCLC, reported in fewer than 1% of samples across several large studies⁶⁻¹¹, whereas data on the reported incidence of MSI-H in SCLC has been limited and conflicting¹²⁻¹⁵. One study reported MSI-H in lung adenocarcinoma patients with smoking history, and 3 of 4 MSI-H patients examined also had metachronous carcinomas in other organs, although this has not been investigated in large scale studies⁶. Published data investigating the prognostic implications of MSI in NSCLC are limited (PubMed, Oct 2021).

also relative to chemotherapy⁴¹, has been observed across all TMB levels.

FREQUENCY & PROGNOSIS

A large-scale genomic analysis found that unspecified lung non-small cell lung carcinoma (NSCLC), lung adenocarcinoma, and lung squamous cell carcinoma (SCC) samples harbored median TMBs between 6.3 and 9 Muts/Mb, and 12% to 17% of cases had an elevated TMB of greater than 20 Muts/Mb42. Lower TMB is observed more commonly in NSCLCs harboring known driver mutations (EGFR, ALK, ROS1, or MET) with the exception of BRAF or KRAS mutations, which are commonly observed in elevated TMB cases⁴³. Although some studies have reported a lack of association between smoking and mutational burden in NSCLC44-45, several other large studies did find a strong association with increased TMB⁴⁶⁻⁴⁹. TMB >10 muts/Mb was found to be more frequent in NSCLC metastases compared with primary tumors for both adenocarcinoma (38% vs. 25%) and SCC (41% vs. 35%) subtypes⁵⁰. A meta-analysis of 19 studies of immune checkpoint inhibitor-treated NSCLC (n = 2,315 patients) demonstrated that high TMB predicted a significantly longer OS than low TMB (HR = 0.70), and within the high TMB group, immunotherapy was associated with an improved PFS (HR = 0.62, P<0.001), OS (HR = 0.67, P<0.001) and a higher response rate (OR = 2.35, P<0.001) compared to chemotherapy⁵¹. In contrast, a large study of Chinese patients with untreated lung

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁶. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2¹⁶⁻¹⁸. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers19-21. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins16,18,20-21.

adenocarcinoma reported a shorter median OS for tumors with a higher number of mutations in a limited gene set compared with a lower mutation number (48.4 vs. 61.0 months)⁴⁴. Another study of patients with NSCLC treated with EGFR inhibitors or platinum doublet chemotherapy found elevated TMB to be correlated with poorer prognosis, as well as finding lower TMB in combination with PD-L1 negative status to be significantly associated with longer median survival in patients with lung adenocarcinoma⁵². However, no significant prognostic association of TMB and/or PD-L1 status with survival has been reported in patients with lung SCC⁵²⁻⁵³.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma54-55 and cigarette smoke in lung cancer^{32,56}, treatment with temozolomide-based chemotherapy in glioma⁵⁷⁻⁵⁸, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁵⁹⁻⁶³, and microsatellite instability (MSI)^{59,62-63}. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1- or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{22-23,26-28,32-39,64}.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2022 Foundation Medicine, Inc. All rights reserved.

^{gene} EGFR

ALTERATION exon 19 deletion (E746_A750del) TRANSCRIPT ID NM 005228

CODING SEQUENCE EFFECT 2236_2250delGAATTAAGAGAAGCA

VARIANT ALLELE FREQUENCY (% VAF) 18.5%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -For patients with non-small cell lung cancer, EGFR activating mutations may predict sensitivity to EGFR TKIs, including erlotinib65, gefitinib66, afatinib67, dacomitinib68, and osimertinib69; however, the data for patients with other tumor types are limited⁷⁰⁻⁷⁵. The Phase 1 CHRYSALIS study of amivantamab monotherapy or in combination with lazertinib for the treatment of EGFR-mutated non-small cell lung cancer (NSCLC) has produced encouraging preliminary results for treatment-naive patients and patients who relapsed after treatment with osimertinib with and without chemotherapy, including osimertinib-relapsed patients with biomarkers indicating EGFR/MET-based osimertinib resistance76-79 . In a Phase 1 trial, the HER3-targeted antibody patritumab deruxtecan elicited an ORR of 39% (22/57, 1 CR) and a median

PATIENT

PFS of 8.2 months for patients with non-small cell

lung cancer previously treated with an EGFR TKI,

alterations⁸⁰. A Phase 1 trial evaluating the EGFR

inhibitor AZD3759 reported a reduction in the

patients with previously treated non-small cell

lung cancer (NSCLC) harboring either the EGFR

PRs⁸¹⁻⁸². In a Phase 1/2 trial for advanced NSCLC,

evaluable patients and 44% (8/18, intracranial) for

mutations and experienced disease progression on

standard treatments reported an ORR of 15% with

10/67 patients achieving PR, and a DCR of 73%

with 39 additional patients achieving SD⁸⁴. OR

was observed in a numerically higher proportion

of patients with the EGFR T790M mutation than

Nontargeted Approaches —

metastatic non-small cell lung cancer previously

Patients with EGFR-mutated non-squamous

treated with EGFR TKI have benefited from

and paclitaxel (OS HR 0.61 compared with

immune checkpoint inhibitors combined with

anti-angiogenic and chemotherapy, particularly

bevacizumab/chemotherapy)85-87 or sintilimab

atezolizumab plus bevacizumab plus carboplatin

those without this mutation⁸⁴.

patients with brain metastases⁸³. A Phase 1 trial

evaluating the irreversible pan-HER inhibitor

FCN-411 for NSCLC patients who had EGFR

the brain-penetrant third-generation EGFR TKI

lazertinib enabled ORRs of 54% (69/127) for all

volume of brain metastases in 40% (8/20) of

L858R alteration or EGFR exon 19 deletion,

including 3 confirmed PRs and 3 unconfirmed

many of whom displayed TKI resistance

GENOMIC FINDINGS

plus bevacizumab biosimilar plus cisplatin and pemetrexed (PFS HR 0.46 compared with chemotherapy alone)⁸⁸.

FREQUENCY & PROGNOSIS

EGFR mutation has been reported in 12-36% of lung adenocarcinomas^{48,89-90} and in 4% of lung squamous cell carcinomas⁹¹. EGFR protein expression/overexpression has been reported in up to 70% of NSCLC cases⁹²⁻⁹⁷. In addition, expression of EGFR protein has been shown to be higher in lung squamous cell carcinoma samples as compared to lung adenocarcinoma,⁹⁸⁻⁹⁹. In patients with lung adenocarcinoma, EGFR mutation was a predictor of poor overall survival¹⁰⁰⁻¹⁰¹. However, EGFR mutations have been reported to predict improved survival in patients with resected Stage 1-3 lung adenocarcinoma¹⁰² or resected Stage 1 NSCLC¹⁰³.

FINDING SUMMARY

EGFR encodes the epidermal growth factor receptor, which belongs to a class of proteins called receptor tyrosine kinases. In response to signals from the environment, EGFR passes biochemical messages to the cell that stimulate it to grow and divide¹⁰⁴. EGFR exon 19 deletion mutations, such as seen here, have been shown to activate the tyrosine kinase activity of EGFR and to confer sensitivity to EGFR tyrosine kinase inhibitors such as erlotinib, gefitinib¹⁰⁵⁻¹⁰⁷, afatinib¹⁰⁸, osimertinib¹⁰⁹, and dacomitinib^{68,110}, although limited preclinical data suggest reduced sensitivity to lapatinib¹¹¹⁻¹¹².

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 • CLIA: 22D2027531 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 • CLIA: 22D2027531 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 • CLIA: 22D2027531

© 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

GENOMIC FINDINGS

ORDERED TEST #

GENE GAPC

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -There are no approved drugs targeting APC inactivation in cancer. Loss of APC function leads to accumulation of beta-catenin and upregulation of WNT pathway transcription programs¹¹³, and potential therapeutic approaches to target this pathway include CBP/beta-catenin antagonists, which interfere with the ability of beta-catenin to interact with transcriptional co-activator

CBP¹¹⁴⁻¹¹⁵. In a Phase 1 trial of the CBP/betacatenin antagonist E7386, 1 patient with APCmutated small bowel adenocarcinoma achieved a PR with tumor shrinkage of -69% and response duration of 165 days¹¹⁶; preclinical data support sensitivity of APC-deficient gastric or colorectal cancer models to E7386¹¹⁷⁻¹¹⁸.

FREQUENCY & PROGNOSIS

In the TCGA datasets, APC mutations have been reported in 3.9% of lung adenocarcinomas⁹⁰ and 4.5% of lung squamous cell carcinoma samples analyzed⁹¹. Studies of APC in lung cancer have reported mutations in 5-7% of non-small cell lung cancer (NSCLC) tumors examined^{47,119}. In contrast, loss of heterozygosity at the APC/MCC locus has been reported in up to 68% (17/25) of NSCLC, with a higher incidence in squamous cell carcinomas compared to adenocarcinomas¹²⁰⁻¹²¹. Hypermethylation of APC in NSCLC tumors has been reported in a number of studies¹²²⁻¹²⁵; hypermethylation and lower APC mRNA expression have been associated with poorer survival in patients with NSCLC^{121,126}. Solid

evidence in ovarian cancer indicates that FANCL inactivation may confer sensitivity to PARP inhibitors¹³⁸⁻¹³⁹.

FREQUENCY & PROGNOSIS

FANCL mutations are most frequently observed in tumors of the prostate (5.3%) and liver (4.0%), and are seen at lower frequency in other tumor types (COSMIC, May 2022)¹⁴⁰. Published data investigating the prognostic implications of FANCL alterations in solid tumors and hematologic malignancies are limited (PubMed, May 2022). In a prospective study of 255 patients with follicular lymphoma, 2p gain, which includes VRK2, FANCL, and LINC01122, was associated with worse PFS and OS in multivariate analysis¹⁴¹.

tumors with WNT/beta-catenin pathway alterations, as seen here, were observed to have significantly less T-cell inflammation in one study¹²⁷.

FINDING SUMMARY

FINDING SUMMARY

APC (adenomatous polyposis coli) encodes a tumor suppressor with critical roles in regulating cell division and adhesion. APC interacts with beta-catenin and controls signaling in the WNT pathway, which regulates embryonic development and cell differentiation¹²⁸. Alterations such as seen here may disrupt APC function or expression¹²⁹⁻¹³³.

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in APC are found in more than 90% of patients with familial adenomatous polyposis (FAP)¹³⁴⁻¹³⁶. The prevalence for FAP in the general population is estimated to be 1:8,300 from birth¹³⁷, and in the appropriate clinical context germline testing of APC is recommended.

FANCL encodes a member of the Fanconi anemia

FANCF and FANCG. The activity of this complex

is essential to prevention of chromosome breakage

caused by DNA damage142. Germline mutations in

Alterations such as seen here may disrupt FANCL

in FANCL, such as T367fs*13, have been associated

function or expression¹⁴⁴⁻¹⁵¹. Germline mutations

with Fanconi anemia, breast cancer, and ovarian

cancer and with an increased risk of esophageal

FANCL cause Fanconi anemia, a clinically

heterogeneous disorder involving various

predisposition to cancer; underlying these

phenotypes are defects in DNA repair143.

cancer and prostate cancer¹⁵²⁻¹⁵⁶.

developmental abnormalities as well as

nuclear complex, a multiprotein structure also including the products of FANCA, FANCC,

GENE FANCL

ALTERATION R68* TRANSCRIPT ID NM_018062 CODING SEQUENCE EFFECT 202C>T

VARIANT ALLELE FREQUENCY (% VAF) 50.1%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no targeted therapies that directly address genomic alterations in FANCL. Clinical

© 2022 Foundation Medicine, Inc. All rights reserved.

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

^{gene} TSC1

ALTERATION G464fs*68 TRANSCRIPT ID NM_000368 CODING SEQUENCE EFFECT 1391delG VARIANT ALLELE FREQUENCY (% VAF) 38.7%

POTENTIAL TREATMENT STRATEGIES

— Targeted Therapies — Loss or inactivation of TSC1 can activate mTOR signaling¹⁵⁷⁻¹⁵⁸; however, response rates for patients with TSC1-mutated solid tumors treated with MTOR inhibitors such as everolimus and temsirolimus have been low¹⁵⁹⁻¹⁶¹. In the prospective NCI-MATCH study, the ORR for patients with various TSC1-mutated solid tumors treated with everolimus was 7.7% (1/13); the single response was reported for a patient with urothelial cancer¹⁵⁹. In TSC1-mutated renal cell carcinoma (RCC), although responses to MTOR inhibitors have been described in multiple case series and reports¹⁶²⁻¹⁶⁶, retrospective analysis of a broader cohort showed no responses in TSC1-mutated RCC (o/7)¹⁶⁰. Retrospective analyses of the RECORD-3, GRANITE-1, and EVOLVE-1 studies of everolimus to treat patients with RCC, gastric cancer, or hepatocellular carcinoma, respectively, showed no significant association between alterations in MTOR, TSC1, or TSC2 and median PFS¹⁶¹. PRs have been reported for patients with TSC1-altered perivascular epithelioid cell tumors¹⁶⁷⁻¹⁶⁸ and epithelial ovarian carcinoma¹⁶⁹ treated with nabsirolimus.

FREQUENCY & PROGNOSIS

In the TCGA datasets, TSC1 mutations have been reported in ~2% of lung adenocarcinoma cases⁹⁰ and 2.2% of lung squamous cell carcinoma cases⁹¹. One study reported loss of heterozygosity of TSC1 in 19% (16/86) of non-small cell lung cancer tissue samples¹⁷⁰. Strong cytoplasmic expression of Hamartin was reported in 40.2% of lung adenocarcinomas and in 29% of lung SCCs, with moderate expression in 18.5% of lung adenocarcinomas and 28.5% of lung SCCs in 1 study; in SCLC samples, only 14% expressed GENOMIC FINDINGS

strong expression of Hamartin, and 4.7% had moderate expression¹⁷¹. Published data investigating the prognostic implications of TSC1 alterations in lung cancers are limited (PubMed, Aug 2021).

FINDING SUMMARY

TUMOR TYPE

Lung non-small cell lung carcinoma (NOS)

TSC1 encodes the protein Hamartin, which interacts with Tuberin, the gene product of TSC2, to inhibit and regulate mTOR activity^{157,172}. Alterations such as seen here may disrupt TSC1 function or expression¹⁷³⁻¹⁷⁵.

POTENTIAL GERMLINE IMPLICATIONS

Inactivating germline mutations in TSC1 are associated with the autosomal dominant disorder tuberous sclerosis complex, which results in the development of hamartomas in multiple organ systems and an increased risk of developing renal cell carcinoma¹⁷⁶⁻¹⁷⁷, TSC1 mutations account for approximately 10 to 30% of reported sporadic cases¹⁷⁸. Prevalence for this disorder in the general population is estimated to be 1/6,000 from birth and 1/12,000 to 1/14,000 in children under 10 years of age¹⁷⁹. In the appropriate clinical context, germline testing of TSC1 is recommended.

gene ASXL1

ALTERATION G967del TRANSCRIPT ID

NM_015338

CODING SEQUENCE EFFECT 2898_2900delAGG

VARIANT ALLELE FREQUENCY (% VAF) 72.2%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no targeted therapies available to address genomic alterations in ASXL1.

FREQUENCY & PROGNOSIS

Electronically signed by Erik Williams, M.D. |

Foundation Medicine, Inc. | 1.888.988.3639

ASXL1 alterations occur infrequently across

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

various solid tumor types¹⁸⁰ and are not known to act as drivers in any specific solid cancer type¹⁸¹. Published data investigating the prognostic implications of ASXL1 alterations in solid tumors are limited (PubMed, May 2022). In the context of clonal hematopoiesis, ASXL1 mutations are significantly enriched in current or former smokers¹⁸².

FINDING SUMMARY

ASXL1 regulates epigenetic marks and transcription through interaction with polycomb complex proteins and various transcription activators and repressors¹⁸³⁻¹⁸⁵. Although alterations such as seen here have not been fully characterized and are of unknown functional significance, similar alterations have been previously reported in the context of cancer, which may indicate biological relevance.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion¹⁸⁶⁻¹⁹¹. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy¹⁸⁶⁻¹⁸⁷. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease¹⁹². Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH^{190,193-194}. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

© 2022 Foundation Medicine, Inc. All rights reserved.

PAGE 6 Of 24

TUMOR TYPE

THERAPIES WITH CLINICAL BENEFIT

Lung non-small cell lung carcinoma (NOS)

IN PATIENT'S TUMOR TYPE

ORDERED TEST #

Afatinib

Assay findings association

EGFR exon 19 deletion (E746_A750del)

AREAS OF THERAPEUTIC USE

Afatinib is an irreversible kinase inhibitor that targets the kinase domains of EGFR, ERBB2/HER2, and ERBB4. It is FDA approved for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) and nonresistant EGFR mutations and for the treatment of patients with metastatic, squamous NSCLC after progression on platinum-based chemotherapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

EGFR activating mutations may indicate sensitivity to afatinib or dacomitinib for patients with non-small cell lung cancer^{67-68,195-196}, whereas data for patients with other tumor types are limited^{70-75,197}.

SUPPORTING DATA

Afatinib has shown significant clinical activity for patients with NSCLC and the EGFR common sensitizing mutations L858R or exon 19 deletions, based on extensive clinical evidence67,195,198-201 . Two randomized Phase 3 trials reported significantly improved median PFS from afatinib compared with chemotherapy for patients with EGFR common sensitizing mutations (LUX-Lung 3, 13.6 vs. 6.9 months, HR 0.47, p<0.001; LUX-Lung 6, 11.0 vs. 5.6 months, HR 0.28, p<0.0001)67,195. However, while afatinib significantly increased OS relative to chemotherapy for patients with EGFR exon 19 alterations in these two trials (LUX-Lung 3, 33.3 vs. 21.1 months, HR=0.54; LUX-Lung 6, 31.4 vs. 18.4 months, HR=0.64), no significant OS differences were observed in treatment for patients with L858R mutation¹⁰⁸. A similar alteration-specific difference was observed for EGFR-mutated treatmentnaive NSCLC in a retrospective analysis, which reported numerically longer median OS from second- versus firstgeneration EGFR TKIs (48.8 vs. 26.4 months, HR=0.59) for patients with exon 19 deletions, but no substantial difference for patients with L858R (25.4 vs. 20.6 months, HR=0.90)¹⁹⁸. A Phase 2b study of first-line afatinib compared with gefitinib, also for NSCLC with exon 19 deletions or L858R, reported similar median OS for the two therapies (27.9 vs. 24.5 months, HR=0.86) but significantly longer time-to-treatment-failure (13.7 vs. 11.5 months, HR=0.75) and higher ORR (73% vs. 56%, p=0.0018) with afatinib¹⁹⁹. Patients with metastatic

NSCLC and common EGFR mutations who progressed on prior chemotherapy experienced an ORR of 50.0% (30/ 60) from afatinib in a Phase 4 trial²⁰⁰. As first-line therapy for NSCLC with EGFR exon 19 deletions or L858R, prospective or randomized Phase 2 trials have reported a median PFS of 10.2 months and OS of 24.8 months for patients unfit for chemotherapy²⁰¹ and an ORR of 72.5% (n=40, 1 CR), DCR of 100% (40/40), and median PFS and OS of 15.2 and 30.0 months, respectively, for elderly patients \geq 70 years old²⁰². A retrospective study of afatinib administered to Asian patients with NSCLC, 99% of whom were previously treated with erlotinib and/ or gefitinib, reported an ORR of 27.4% (63/230) for patients with common sensitizing EGFR mutations and an ORR of 24.4% (105/431) for the entire cohort²⁰³. In a case report, a patient with NSCLC with exon 19 deletion and leptomeningeal metastases experienced an ongoing 16-month PR from afatinib in extracranial, brain, and leptomeningeal lesions²⁰⁴. For patients with erlotinib- or gefitinib-resistant NSCLC and EGFR mutations, Phase 2/ 3 studies of afatinib treatment have generally reported ORRs of only 7 to 9%205-210; however, DCRs of more than 50% have been observed²⁰⁹. In a Phase 1b or observational study, patients with EGFR-mutated NSCLC who progressed on afatinib experienced further clinical benefit from subsequent treatment with afatinib and cetuximab²¹¹ or osimertinib²¹², respectively. Extensive clinical data have demonstrated that afatinib is effective for patients with EGFR-mutated advanced NSCLC, including exon 19 deletions and L858 mutations, as well as uncommon sensitizing mutations in exons 18 or $20^{67\!,\!108\!,\!195\!,\!199\!,\!201\!,\!203\!,\!213}$. A fatinib has also shown activity for patients with advanced NSCLC and ERBB2 mutations, most of which were exon 20 insertions $^{209,214\text{--}224}$. The randomized Phase 3 LUX-Lung 8 trial comparing afatinib with erlotinib as second-line therapy for advanced lung squamous cell carcinoma (SCC) reported significantly longer median OS (7.9 vs. 6.8 months, HR=0.81), significantly longer median PFS (2.6 vs. 1.9 months, HR=0.81), and higher DCR (51% vs. 40%, p=0.002) for patients treated with afatinib²¹³. For patients who progressed on afatinib monotherapy, additional clinical benefit has been reported from afatinib combined with paclitaxel²²⁵.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2022 Foundation Medicine, Inc. All rights reserved.

IN PATIENT'S TUMOR TYPE

ORDERED TEST #

Dacomitinib

Assay findings association

EGFR exon 19 deletion (E746_A750del)

AREAS OF THERAPEUTIC USE

Dacomitinib is a second generation irreversible tyrosine kinase inhibitor that targets the kinase domains of EGFR, ERBB2/HER2, and ERBB4/HER4. It is FDA approved for the first-line treatment of patients with metastatic nonsmall cell lung cancer (NSCLC) with EGFR exon 19 deletion or exon 21 L858R substitution mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

EGFR activating mutations may indicate sensitivity to afatinib or dacomitinib for patients with non-small cell lung cancer^{67-68,195-196}, whereas data for patients with other tumor types are limited^{70-75,197}. Patients with untreated advanced NSCLC and EGFR exon 19 deletions achieved an ORR of $76\%^{110}$ and a median OS of 34.1 months with dacomitinib⁶⁸.

SUPPORTING DATA

A randomized Phase 3 trial in patients with NSCLC with activating EGFR mutations (primarily L858R or exon 19 deletions) reported improved clinical benefit with firstline dacomitinib compared with gefitinib (median OS, 34.1 vs. 26.8 months, HR=0.760; median PFS, 14.7 vs. 9.2 months, HR=0.59)110,226 ; median OS was 34.1 to 36.7 months and ORR was 74.9% to 79.3%, depending on the dosing regimen²²⁷. A pooled subgroup analysis of patients with NSCLC with activating EGFR mutations reported improved clinical efficacy with dacomitinib treatment compared with erlotinib (median PFS, 14.6 vs, 9.6 months, HR=0.717; median OS, 26.6 vs, 23.2 months, HR=0.737)²²⁸. Reduced efficacy of dacomitinib treatment in patients with NSCLC harboring the EGFR T790M mutation has been reported in multiple studies²²⁹⁻²³¹. A Phase 1 trial of combination dacomitinib and a MEK1/2 inhibitor for patients with KRAS-mutated CRC, NSCLC, or pancreatic cancer reported 20/36 SDs and 16 PDs, however toxicity from this combination prevented longterm treatment in this patient population²³². A Phase 2 study of dacomitinib in patients with NSCLC who had been previously treated with chemotherapy or erlotinib and were not selected for EGFR mutations reported an ORR of 4.5% (3/66)²³⁰. In one study, the combination of dacomitinib and crizotinib was ineffective and associated with high toxicity in patients with NSCLC²³³.

TUMOR TYPE

THERAPIES WITH CLINICAL BENEFIT

Lung non-small cell lung carcinoma (NOS)

Erlotinib

Assay findings association

EGFR exon 19 deletion (E746_A750del)

AREAS OF THERAPEUTIC USE

Erlotinib is a small-molecule inhibitor of EGFR. It is FDA approved as a monotherapy or in combination with ramucirumab for patients with metastatic non-small cell lung cancer (NSCLC) harboring EGFR exon 19 deletions or exon 21 (L858R) mutations. Erlotinib is also FDA approved in combination with gemcitabine as a first-line treatment for advanced pancreatic cancer. Please see the drug label for full prescribing information.

GENE ASSOCIATION

Amplification or activation of EGFR may predict sensitivity to therapies such as erlotinib. For patients with activating mutations in EGFR, treatment with erlotinib has been associated with improved response and lengthened time to progression^{65,234-236}.

SUPPORTING DATA

In one study, median PFS (4.1 vs. 11.7 months, HR=9.7) and median OS (14.1 vs. 47.0 months, HR=10.2) were significantly shorter for patients with non-small cell lung cancer (NSCLC) harboring EGFR L747_A750>P (n=6) relative to those with deletions affecting EGFR E746_A750 (n=24) treated with first-line erlotinib²³⁷. For patients with EGFR-mutated non-small cell lung cancer (NSCLC), the Phase 3 EURTAC trial improved PFS with first-line erlotinib relative to platinum-based

chemotherapy (9.7 vs. 5.2 months, HR=0.37), though OS was not prolonged (22.9 vs 19.6 months, HR=0.92)^{65,238}. This study and meta-analyses attribute the lack of OS benefit to the effectiveness of post-progression salvage therapy in the control arm²³⁹. A Phase 3 study reported similar efficacy of erlotinib and gefitinib for patients with EGFR-mutated NSCLC²⁴⁰. Patients with EGFR-mutated NSCLC have experienced PFS benefit with the addition of bevacizumab to erlotinib in the first-line setting in Phase 3 trials including the ARTEMIS-CTONG1509 trial for Chinese patients (17.9 vs. 11.2 months, HR=0.55)²⁴¹, the NEJ026 trial for Japanese patients (16.9 vs. 13.3 months, HR=0.605)²⁴²⁻²⁴³, and the international BEVERLY trial (15.4 vs. 9.7 months, HR=0.60)²⁴⁴; OS benefit has not been observed across these studies. In the maintenance setting, Phase 3 trials have reported significantly improved PFS with maintenance erlotinib following first-line platinumbased chemotherapy, with the largest benefit for patients with EGFR mutations^{234,245}. In the neoadjuvant setting, a Phase 2 trial reported a numerically improved ORR and significantly longer PFS with erlotinib compared with chemotherapy for patients with EGFR-mutated advanced NSCLC²³⁵. In the placebo-controlled Phase 3 RELAY trial, the addition of ramucirumab to erlotinib improved PFS for previously untreated patients with NSCLC harboring EGFR L858R or exon 19 deletion (19.4 vs. 12.4 months, HR=0.59)²⁴⁶.

Sample Prepa Sample Ar © 2022 Foundation Medicine, Inc. All rights reserved.

IN PATIENT'S TUMOR TYPE

ORDERED TEST #

Gefitinib

Assay findings association

EGFR exon 19 deletion (E746_A750del)

AREAS OF THERAPEUTIC USE

Gefitinib targets the tyrosine kinase EGFR and is FDA approved to treat non-small cell lung cancer (NSCLC) harboring exon 19 deletions or exon 21 (L858R) substitution mutations in EGFR. Please see the drug label for full prescribing information.

GENE ASSOCIATION

Activation of EGFR may predict sensitivity to therapies such as gefitinib. Clinical studies have consistently shown significant improvement in response rates and PFS for patients with EGFR-mutated non-small cell lung cancer (NSCLC) treated with gefitinib compared with chemotherapy^{236,247-252}, and responses have been reported for patients with EGFR-rearranged NSCLC²⁵³⁻²⁵⁴.

SUPPORTING DATA

Gefitinib achieved an ORR of 69.8% and OS of 19.2 months as first-line treatment for Caucasian patients with non-small cell lung cancer (NSCLC) and EGFR sensitizing mutations⁶⁶. Phase 3 studies for Japanese patients^{249,255}

and East Asian patients^{250,256} with EGFR-mutated NSCLC reported longer PFS but not longer OS on first-line gefitinib compared with cisplatin and docetaxel or carboplatin and paclitaxel. Retrospective analysis of East Asian patients receiving first-line gefitinib reported greatest PFS benefit among patients with EGFR exon 19 insertions or deletions and shortest PFS for those with exon 20 insertions (1.2 months)257. Two Phase 3 trials of the combination gefitinib plus pemetrexed and carboplatin compared with gefitinib alone for patients with advanced NSCLC harboring EGFR activating mutations reported significantly higher ORRs (75.3% and 84% vs. 62.5% and 67%), longer median PFS (16 and 20.9 months vs. 8 and 11.9 months), and longer median OS (50.9 months and not reached vs. 17 and 38.8 months) with combination treatment; however, combination treatment was associated with increased Grade 3 or higher adverse events²⁵⁸⁻²⁵⁹ . In a Phase 1 study for treatment-naive patients with NSCLC, 63% (19/30) of patients experienced PR from the combination of gefitinib and the PD-L1 inhibitor durvalumab²⁶⁰.

TUMOR TYPE

THERAPIES WITH CLINICAL BENEFIT

Lung non-small cell lung carcinoma (NOS)

Osimertinib

Assay findings association

EGFR

exon 19 deletion (E746_A750del)

AREAS OF THERAPEUTIC USE

Osimertinib is an irreversible EGFR TKI that is selective for EGFR TKI-sensitizing mutations and the EGFR T790M mutation. It is FDA approved in various treatment settings for patients with non-small cell lung cancer (NSCLC) whose tumors have EGFR exon 19 deletions, exon 21 L858R mutations, or T790M mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

EGFR TKI-sensitizing mutations or rearrangements and/ or the EGFR T790M mutation may predict sensitivity to osimertinib in non-small cell lung cancer^{69,109,253,261-262}. Patients with untreated advanced NSCLC and EGFR exon 19 deletions or L858R mutations achieved an ORR of 80% and a median PFS of 21.4 and 14.4 months, respectively¹⁰⁹.

SUPPORTING DATA

The Phase 3 FLAURA study reported that, relative to erlotinib or gefitinib, first-line osimertinib significantly increased both median PFS (18.9 vs. 10.2 months, HR=0.46) and median OS (38.6 vs. 31.8 months; HR=0.80) for patients with advanced NSCLC and activating, sensitizing EGFR mutations (specifically, exon 19 deletion or L858)^{109,263}. In the Phase 3 ADAURA study, patients with early Stage (IB/II/IIIA) EGFR-mutated NSCLC experienced longer PFSs on osimertinib compared to placebo in the adjuvant setting (not reached vs. 28.1 months; HR=0.21)²⁶⁴. A Phase 1 study reported that

T790M-negative patients with acquired EGFR TKI resistance experienced an ORR of 21% and a median PFS of 2.8 months⁶⁹. A Phase 1b/2 study evaluating osimertinib in combination with the CD73 inhibitor oleclumab for patients with advanced EGFR-mutated, T790M-negative NSCLC reported an ORR of 19% (4/19), a DCR of 81%, and mPFS of 11 months (Kim et al., 2021 AACR Abstract CT163). A Phase 2 trial of osimertinib in combination with bevacizumab versus osimertinib monotherapy for patients with untreated advanced nonsmall cell lung cancer (NSCLC) harboring EGFR del19 or L858R reported no difference in ORR (82% vs 86%) and median PFS (22.1 vs 20.2 months, HR 0.862 p=0.213)²⁶⁵. The Phase 2 BOOSTER study of osimertinib in combination with bevacizumab versus osimertinib monotherapy for patients with advanced NSCLC with EGFR-sensitizing mutations (exon 19 del or L858R) and L790M at progression on prior EGFR TKI reported no difference in ORR (55% vs 55%), median OS (24.0 vs 24.3 months, HR 1.03 p=0.91), or median PFS (15.4 vs 12.3 months, HR 0.96 p=0.83), although improved PFS was observed for the combination in the subgroup of current or former smokers (16.5 vs 8.4, HR 0.52) while nonsmokers had no benefit (HR 1.47)²⁶⁶. The Phase 1b TATTON study of osimertinib in combination with selumetinib, savolitinib, or durvalumab for patients with previously treated EGFR-mutated NSCLC reported ORRs of 42% (15/36), 44% (8/18), and 44% (10/23), respectively²⁶⁷.

© 2022 Foundation Medicine, Inc. All rights reserved.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

THERAPIES WITH CLINICAL BENEFIT IN PATIENT'S TUMOR TYPE

ORDERED TEST #

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

CLINICAL TRIALS

ORDERED TEST #

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

^{gene} APC	RATIONALE Based on preclinical and limited clinical data, Al inactivation may be associated with sensitivity t	,
ALTERATION /158fs*12		
NCT03833700		PHASE 1
A Study of E7386 in Participants	With Advanced Solid Tumor Including Colorectal Cancer (CRC)	TARGETS CBP, Beta-catenin
LOCATIONS: Fukuoka (Japan), I	Nagaizumi-cho (Japan), Chuo Ku (Japan), Kashiwa (Japan)	
NCT04008797		PHASE 1
A Study of E7386 in Combination	n With Other Anticancer Drug in Participants With Solid Tumor	TARGETS CBP, Beta-catenin, FGFRs, RET, PDGFRA, VEGFRs, KIT
LOCATIONS: Osakasayama (Jap	pan), Chuo-Ku (Japan), Kashiwa (Japan)	
NCT03264664		PHASE 1
Study of E7386 in Participants W	Vith Selected Advanced Neoplasms	TARGETS CBP, Beta-catenin

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 © 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

PHASE 3

TARGETS

MET, EGFR

CLINICAL TRIALS

ORDERED TEST #

GENE

EGFR

RATIONALE

EGFR activating mutations, rearrangements, or amplification may predict sensitivity to EGFRtargeted therapies. Strategies to overcome resistance to current agents include nextgeneration EGFR inhibitors and combination therapies.

ALTERATION exon 19 deletion (E746_A750del)

NCT04487080

A Study of Amivantamab and Lazertinib Combination Therapy Versus Osimertinib in Locally Advanced or Metastatic Non-Small Cell Lung Cancer

LOCATIONS: Malvern (Australia), Heidelberg (Australia), Wollongong (Australia), Bedford Park (Australia), Westmead (Australia), Woolloongabba (Australia), Nedlands (Australia), Johor Bahru (Malaysia), Kuantan (Malaysia), Petaling Jaya (Malaysia)

NCT03497767	PHASE 2
A Randomised Phase II Trial of Osimertinib With or Without SRS for EGFR Mutated NSCLC With Brain Metastases	TARGETS EGFR
LOCATIONS: Melbourne (Australia), Sydney (Australia), Newcastle (Australia), Brisbane (Australia), Sir	ngapore (Singapore)
NCT03783403	PHASE 1
A Study of CC-95251, a Monoclonal Antibody Directed Against SIRPa, in Subjects With Advanced Solid and Hematologic Cancers	TARGETS CD20, EGFR, SIRP-alpha
LOCATIONS: Melbourne (Australia), Heidelberg (Australia), Seoul (Korea, Republic of), Villejuif CEDEX ((Canada), Texas	(France), California, Oregon, Arizona, Edmonton
NCT04721015	PHASE 1
Study of Intravenous (IV) ABBV-637 Alone or in Combination With IV Docetaxel/Osimertinib to Assess Adverse Events and Change in Disease Activity in Adult Participants With Relapsed/Refractory (R/R) Solid Tumors	TARGETS EGFR
LOCATIONS: Heidelberg (Australia), Wollongong (Australia), Tainan (Taiwan), Taoyuan City (Taiwan), F (Japan), Seoul (Korea, Republic of), Goyang (Korea, Republic of), Haifa (Israel)	⁻ ukuoka-shi (Japan), Chuo-ku (Japan), Kashiwa-shi
NCT02609776	PHASE 1
A Dose Escalation Study of JNJ-61186372 in Participants With Advanced Non-Small Cell Lung Cancer	TARGETS MET, EGFR
LOCATIONS: Heidelberg (Australia), Kogarah (Australia), Camperdown (Australia), Woolloongabba (Au Taichung (Taiwan), Taipei City (Taiwan), Taipei (Taiwan), Guangzhou (China)	ustralia), Murdoch (Australia), Kaohsiung (Taiwan),
NCT03755102	PHASE NULL
A Study of Dacomitinib in Patients With Metastatic EGFR Mutant Lung Cancer Previously Treated With Osimertinib	TARGETS ERBB4, EGFR, ERBB2
LOCATIONS: New Jersey, New York	

© 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

CLINICAL TRIALS

ORDERED TEST #

NCT04778800	PHASE NULL
A Dose Exploration Study of Almonertinib for EGFRm NSCLC Patients With Brain/Leptomeningeal Metastasis (ARTISTRY)	TARGETS EGFR
LOCATIONS: Zhengzhou (China)	
NCT04816838	PHASE NULL
A Window of Opportunity Study for Investigating Drug Tolerant Persister (DTP) to Neoadjuvant Osimertinib in Resectable Non-small Cell Lung Cancer (NSCLC) Harbouring EGFR Mutations	TARGETS EGFR
LOCATIONS: Seoul (Korea, Republic of)	
NCT04143607	PHASE 3
ASK120067 Versus Gefitinib as First-line Treatment for EGFRm Locally Advanced or Metastatic NSCLC	TARGETS EGFR
LOCATIONS: Nanjing (China), Beijing (China)	
NCT04181060	PHASE 3
Osimertinib With or Without Bevacizumab as Initial Treatment for Patients With EGFR-Mutant Lung Cancer	targets EGFR, VEGFA
LOCATIONS: Hawaii, California	

© 2022 Foundation Medicine, Inc. All rights reserved.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

RATIONALE On the basis of clinical evidence in ovarian cancer, FANCL loss or inactivation may confer sensitivity Treatment Approach: A Novel Pilot Study	CLINICAL TRIALS
On the basis of clinical evidence in ovarian cancer, FANCL loss or inactivation may confer sensitivity	PHASE NULL TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK,
Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK,
Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK,
Treatment Approach: A Novel Pilot Study	CDK4, CDK6, PI3K-alpha, PD-L1, MEK,
	PHASE 2
Rm) and/or Homologous Recombination Deficiency	TARGETS PARP, PD-1
	ukuoka (Japan), Okayama (Japan), Nagoya (Japan
	PHASE 1/2
nation With Anti-cancer Agents in Patients With	targets ERBB2, TROP2, PARP
pan), Chuo-ku (Japan), Seoul (Korea, Republic of), Texa	as, Oklahoma, Warszawa (Poland), Budapest
	PHASE 2
	targets PARP
	(Korea, Republic of), Seoul (Korea, Republic of),
	PHASE 3
	targets PD-L1, PARP, PD-1
	hina), Chiang Mai (Thailand), Nanchang (China),
	h Pembrolizumab (MK-3475) in the Treatment of RRm) and/or Homologous Recombination Deficiency (KEYLYNK-007) stralia), Southport (Australia), Nedlands (Australia), Fi orea, Republic of) nation With Anti-cancer Agents in Patients With pan), Chuo-ku (Japan), Seoul (Korea, Republic of), Texa icipants With Previously Treated, Homologous ologous Recombination Deficiency (HRD) Positive quarie (Australia), Nedlands (Australia), Seongnam-si ((Argentina), Buenos Aires (Argentina), California tt Chemoradiation Therapy Followed by ge III Non-Small Cell Lung Cancer (NSCLC) na), Khon Kaen (Thailand), Xiamen (China), Fuzhou (C hina)

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639 @ 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

CLINICAL TRIALS

NCT02264678	PHASE 1/2
Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents	TARGETS ATR, PARP, PD-L1
LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Goyang-si (Korea, Republic Cambridge (United Kingdom), Massachusetts, Sutton (United Kingdom)	c of), California, New York, Villejuif (France),
NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, BRAF, SMO
LOCATIONS: Vancouver (Canada), Edmonton (Canada), Saskatoon (Canada), Regina (Canada), Londo Ottawa (Canada), Montreal (Canada)	n (Canada), Toronto (Canada), Kingston (Canada),
NCT04497116	PHASE 1/2
Study of RP-3500 in Advanced Solid Tumors	targets ATR, PARP
LOCATIONS: Texas, Tennessee, Illinois, Copenhagen (Denmark), North Carolina, Toronto (Canada), Ne Rhode Island, Massachusetts	ew York, Newcastle Upon Tyne (United Kingdom),
NCT04991480	PHASE 1/2
A Study of ART4215 for the Treatment of Advanced or Metastatic Solid Tumors	TARGETS PARP, Pol theta
LOCATIONS: Texas, Oklahoma, Tennessee, Florida, New York, London (United Kingdom)	
NCT04550494	PHASE 2
Measuring the Effects of Talazoparib in Patients With Advanced Cancer and DNA Repair Variations	TARGETS PARP
LOCATIONS: Oklahoma, Maryland	
	© 2022 Foundation Medicine, Inc. All rights reserved

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

	Caro	cinoma (NOS)
DRDERED TEST #		CLINICAL TRIALS
GENE TSC1 Alteration G464fs*68	RATIONALE Inactivating TSC1 alterations may lead to increased mTOR activation and predict sensitivity	to mTOR inhibitors.
NCT04337463		PHASE NULL
ATG-008 Combined With Toripalimab in	n Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1
LOCATIONS: Chongqing (China), Cheng	gdu (China)	
NCT02693535		PHASE 2
TAPUR: Testing the Use of Food and Dru Abnormality in a Tumor Gene in People	ng Administration (FDA) Approved Drugs That Target a Specific With Advanced Stage Cancer	TARGETS VEGFRs, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, CDK4, CDK6, FLT3, CSF1R, KIT, RET, mTOR, EGFR, ERBB2, MEK, BRAF, SMO, DDR2, PARP, PD-1, CTLA-4, ERBB4
LOCATIONS: Hawaii, California		
NCT03297606		PHASE 2
Canadian Profiling and Targeted Agent (Utilization Trial (CAPTUR)	TARGETS VEGFRs, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, BRAF, SMO
LOCATIONS: Vancouver (Canada), Edm Ottawa (Canada), Montreal (Canada)	nonton (Canada), Saskatoon (Canada), Regina (Canada), Londor	n (Canada), Toronto (Canada), Kingston (Canada),
NCT04803318		PHASE 2
Trametinib Combined With Everolimus a Tumors	and Lenvatinib for Recurrent/Refractory Advanced Solid	TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK
LOCATIONS: Guangzhou (China)		
NCT03239015		PHASE 2
Efficacy and Safety of Targeted Precision Event	n Therapy in Refractory Tumor With Druggable Molecular	TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRs, BRAF, CDK4, CDK6
LOCATIONS: Shanghai (China)		

© 2022 Foundation Medicine, Inc. All rights reserved.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

CLINICAL TRIALS

NCT03203525	PHASE 1
Combination Chemotherapy and Bevacizumab With the NovoTTF-100L(P) System in Treating Participants With Advanced, Recurrent, or Refractory Hepatic Metastatic Cancer	TARGETS VEGFA, mTOR
LOCATIONS: Texas	
NCT04185831	PHASE 2
A MolEcularly Guided Anti-Cancer Drug Off-Label Trial	TARGETS PD-L1, MEK, mTOR
LOCATIONS: Uppsala (Sweden), Gothenburg (Sweden)	
NCT01737502	PHASE 1/2
Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer	TARGETS mTOR
LOCATIONS: Florida	
NCT05125523	PHASE 1
A Study of Sirolimus for Injection (Albumin Bound) in Patients With Advanced Solid Tumors	TARGETS mTOR
LOCATIONS: Tianjin (China)	
NCT01582191	PHASE 1
A Phase 1 Trial of Vandetanib (a Multi-kinase Inhibitor of EGFR, VEGFR and RET Inhibitor) in Combination With Everolimus (an mTOR Inhibitor) in Advanced Cancer	TARGETS mTOR, EGFR, SRC, RET, VEGFRs

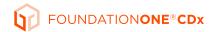
LOCATIONS: Texas

© 2022 Foundation Medicine, Inc. All rights reserved.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

ORDERED TEST #

APPENDIX Variants of U


Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

APC A731T	AURKB R139S	FGFR2 V532L	KMT2A (MLL) P2502H
MDM2 Q414H	SPEN R3193Q	TSC2 K258E	
	*		

© 2022 Foundation Medicine, Inc. All rights reserved.

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

ORDERED TEST #

APPENDIX

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

	T: ENTIRE CODINO MBER ALTERATIO		R THE DETECTION	N OF BASE SUBS	TITUTIONS, INSER	TION/DELETION	is,	
ABL1	ACVR1B	AKT1	AKT2	АКТЗ	ALK	ALOX12B	AMER1 (FAM123B	or WTX)
APC	AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX
AURKA	AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2
BCL6	BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1
BTG2	ВТК	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOT1L	EED	EGFR	EMSY (C11orf30)	EP300	ЕРНАЗ	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3	GATA4
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3-3A (H3F3A)
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	КІТ	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	ΜΑΡΚ1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	ΜΚΝΚ1	MLH1	MPL	MRE11 (MRE11A)	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	МИТҮН	МҮС	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	NOTCH3
NPM1	NRAS	NSD2 (WHSC1 or I	MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3
P2RY8	PALB2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)
PDGFRA	PDGFRB	PDK1	РІКЗС2В	PIK3C2G	РІКЗСА	РІКЗСВ	PIK3R1	PIM1
PMS2	POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI
PRKN (PARK2)	PTCH1	PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51
RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10
REL	RET	RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO
SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3
STK11	SUFU	SYK	ТВХЗ	ΤΕΚ	TENT5C (FAM46C)		TGFBR2	TIPARP
TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3	U2AF1	VEGFA	VHL
WT1	XPO1	XRCC2	ZNF217	ZNF703				
DNA GENE LIST: FOR THE DETECTION OF SELECT REARRANGEMENTS								
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV1
ETV4	ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT
KMT2A (MLL)	MSH2	МҮВ	МҮС	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA
RAF1 TMPRSS2	RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT**

*TERC is an NCRNA

**Promoter region of TERT is interrogated

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS Homologous Recombination status Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

© 2022 Foundation Medicine, Inc. All rights reserved.

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLES

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes detection of alterations in a total of 324 genes. Using an Illumina® HiSeq platform, hybrid capture-selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity (LOH), microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

PATIENT

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical methodology has identified as being present in <10% of the assayed tumor DNA.

TUMOR TYPE Lung non-small cell lung carcinoma (NOS)

APPENDIX

About FoundationOne®CDx

Ranking of Therapies and Clinical Trials *Ranking of Therapies in Summary Table* Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification \rightarrow Geographical proximity \rightarrow Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fractional-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor FFPE tissue sample set. Patients with results categorized as "MS-

© 2022 Foundation Medicine, Inc. All rights reserved.

Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh_docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.
- 3. Homologous Recombination status may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas (Coleman et al., 2017; 28916367). Samples with deleterious BRCA1/2 alteration and/or Loss of Heterozygosity (LOH) score ≥ 16% will be reported as "HRD Positive" and samples with absence of these findings will be reported as "HRD Not Detected," agnostic of potential secondary BRCA1/2 reversion alterations. Certain potentially deleterious missense or small in-frame deletions in BRCA1/ 2 may not be classified as deleterious and, in the absence of an elevated LOH profile, samples with such mutations may be classified as "HRD Not Detected." A result of "HRD Not Detected" does not rule out the presence of a $BRCA_{1/2}$ alteration or an elevated LOH profile outside the assay performance characteristic limitations.
- 4. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian,

peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.

- 5. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- **6**. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.
- 7. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an ERBB2 amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of ERBB2 copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in https://www.mycancergenome.org/content/ disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be approximately 2%.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant

s. The patient information

Lung non-small cell lung carcinoma (NOS)

APPENDIX

TUMOR TYPE

About FoundationOne®CDx

patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

%CV*		
5.11 - 10.40		
5.95 - 12.31		
%CV*		
6.29 - 10.00		
7.33 - 11.71		

*Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT

© 2022 Foundation Medicine, Inc. All rights reserved.

CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
OS	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ТКІ	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version 6.3.0

The median exon coverage for this sample is 567x

© 2022 Foundation Medicine, Inc. All rights reserved.

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

About FoundationOne®CDx

REPORT DATE

PATIENT

TUMOR TYPE

Lung non-small cell lung carcinoma (NOS)

APPENDIX

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Warth A, et al. Virchows Arch. (2016) pmid: 26637197
- 7. Ninomiya H, et al. Br. J. Cancer (2006) pmid: 16641899
- 8. Vanderwalde A, et al. Cancer Med (2018) pmid: 29436178
- 9. Zang YS, et al. Cancer Med (2019) pmid: 31270941
- 10. Dudley JC, et al. Clin. Cancer Res. (2016) pmid:
- 26880610 11. Takamochi K, et al. Lung Cancer (2017) pmid: 28676214
- Pylkkänen L, et al. Environ. Mol. Mutagen. (1997) pmid: 9329646
- 13. Gonzalez R, et al. Ann. Oncol. (2000) pmid: 11061602
- 14. Chen XQ, et al. Nat. Med. (1996) pmid: 8782463
- 15. Merlo A, et al. Cancer Res. (1994) pmid: 8174113
- 16. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- You JF, et al. Br. J. Cancer (2010) pmid: 21081928
 Bairwa NK, et al. Methods Mol. Biol. (2014) pmid:
- 24623249
- 19. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- **20.** Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 21. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 22. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- 23. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 24. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 25. Cristescu R, et al. Science (2018) pmid: 30309915
- Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
 Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 28. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 29. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- **30.** Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- **31.** Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- **32.** Rizvi NA, et al. Science (2015) pmid: 25765070
- 22. Collis M. et al. Science (2013) pilliu. 25/050/0
- Colli LM, et al. Cancer Res. (2016) pmid: 27197178
 Wang VE, et al. J Immunother Cancer (2017) pmid: 28923100
- **35.** Carbone DP, et al. N. Engl. J. Med. (2017) pmid: 28636851
- 36. Rizvi H, et al. J. Clin. Oncol. (2018) pmid: 29337640
- 37. Forde PM, et al. N. Engl. J. Med. (2018) pmid: 29658848
- 38. Miao D, et al. Nat. Genet. (2018) pmid: 30150660
- 39. Chae YK, et al. Clin Lung Cancer (2019) pmid: 30425022
- 40. Paz-Ares et al., 2019; ESMO Abstract LBA80
- 41. Hellmann MD, et al. N. Engl. J. Med. (2019) pmid: 31562796
- **42.** Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 43. Spigel et al., 2016; ASCO Abstract 9017
- **44.** Xiao D, et al. Oncotarget (2016) pmid: 27009843
- 45. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269
- 46. Govindan R, et al. Cell (2012) pmid: 22980976
- 47. Ding L, et al. Nature (2008) pmid: 18948947
- 48. Imielinski M, et al. Cell (2012) pmid: 22980975
- **49.** Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- **50.** Stein et al., 2019; DOI: 10.1200/PO.18.00376

Electronically signed by Erik Williams, M.D. |

Foundation Medicine, Inc. | 1.888.988.3639

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

51. Meng G, et al. PLoS One (2022) pmid: 35113949

52. Chen Y, et al. J. Exp. Clin. Cancer Res. (2019) pmid: 31088500

PATIENT

TUMOR TYPE

Lung non-small cell lung carcinoma (NOS)

18337605

15329413

29169144

10549031

11448917

16870044

15473860

19822006

21568838

29335925

32235514

pmid: 34837838

REPORT DATE

References

APPENDIX

103. Izar B, et al. Ann. Thorac. Surg. (2013) pmid: 23932319

105. Lynch TJ, et al. N. Engl. J. Med. (2004) pmid: 15118073

107. Pao W, et al. Proc. Natl. Acad. Sci. U.S.A. (2004) pmid:

108. Yang JC, et al. Lancet Oncol. (2015) pmid: 25589191

109. Soria JC, et al. N. Engl. J. Med. (2018) pmid: 29151359

110. Wu YL, et al. Lancet Oncol. (2017) pmid: 28958502

111. Gilmer TM, et al. Cancer Res. (2008) pmid: 18199554

112. Foster SA, et al. Cancer Cell (2016) pmid: 26996308

114. Jung YS, et al. Exp Mol Med (2020) pmid: 32037398

117. Yamada K, et al. Cancer Res (2021) pmid: 33408116

118. Kanda Y, et al. Biochem Biophys Res Commun (2022)

119. Ohgaki H, et al. Cancer Lett. (2004) pmid: 15072829

120. Sanz-Ortega J, et al. Pathol. Res. Pract. (1999) pmid:

122. Zhang Y, et al. Cancer Lett. (2011) pmid: 21255913

123. Virmani AK, et al. Clin. Cancer Res. (2001) pmid:

125. J. Natl. Cancer Inst. (2014) pmid: 24309006

126. Lu Y, et al. PLoS Med. (2006) pmid: 17194181

124. Vallböhmer D, et al. Clin Lung Cancer (2006) pmid:

127. Luke JJ, et al. Clin Cancer Res (2019) pmid: 30635339

128. Logan CY, et al. Annu. Rev. Cell Dev. Biol. (2004) pmid:

131. Dikovskaya D, et al. J. Cell. Sci. (2010) pmid: 20144988

132. Murphy SJ, et al. Dig. Dis. Sci. (2007) pmid: 17410430

136. Kastritis E, et al. Int. J. Cancer (2009) pmid: 18844223

138. O'Malley et al., 2017; AACR-NCI-EORTC Abstract LB-A12

140. Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878

133. Aretz S, et al. Hum. Mutat. (2004) pmid: 15459959

134. Kerr SE, et al. J Mol Diagn (2013) pmid: 23159591

137. Half E, et al. Orphanet J Rare Dis (2009) pmid:

139. Dougherty et al., 2014; ASCO Abstract 5536

141. Qu X, et al. Blood (2019) pmid: 30446494

142. Pace P, et al. EMBO J. (2002) pmid: 12093742

145. Alpi AF, et al. Mol. Cell (2008) pmid: 19111657

143. Deakyne JS, et al. Biochemistry Mosc. (2011) pmid:

144. Alpi A, et al. Mol. Cell. Biol. (2007) pmid: 17938197

146. Meetei AR, et al. Nat. Genet. (2003) pmid: 12973351

147. Machida YJ, et al. Mol. Cell (2006) pmid: 16916645

149. Hodson C. et al. Structure (2014) pmid: 24389026

151. Ali AM, et al. Hum. Mutat. (2009) pmid: 19405097

152. Fostira F, et al. Breast Cancer Res. Treat. (2018) pmid:

150. Seki S, et al. Genes Cells (2007) pmid: 17352736

153. Hart SN, et al. BMJ Open (2016) pmid: 27084275

155. Chandrasekharappa SC, et al. Blood (2013) pmid:

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

© 2022 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 23 Of 24

154. Del Valle J, et al. Cancers (Basel) (2020) pmid:

148. Hodson C, et al. J. Biol. Chem. (2011) pmid: 21775430

135. Annu Rev Pathol (2011) pmid: 21090969

129. Eklof Spink K, et al. EMBO J. (2001) pmid: 11707392

130. Liu J, et al. J. Mol. Biol. (2006) pmid: 16753179

121. Poursoltan P, et al. Lung Cancer (2012) pmid: 22542170

115. Krishnamurthy N, et al. Cancer Treat Rev (2018) pmid:

113. Zhan T, et al. Oncogene (2017) pmid: 27617575

116. Kawazoe et al., 2021; ESMO Abstract 473P

104. Ciardiello F, et al. N. Engl. J. Med. (2008) pmid:

106. Paez JG, et al. Science (2004) pmid: 15118125

- **53.** Yu H, et al. J Thorac Oncol (2019) pmid: 30253973
- 54. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 55. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 56. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- **57.** Johnson BE, et al. Science (2014) pmid: 24336570
- 58. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 59. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 60. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
 61. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 62. Nature (2012) pmid: 22810696
- 63. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- 64. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- **65.** Rosell R, et al. Lancet Oncol. (2012) pmid: 22285168
- 66. Douillard JY, et al. Br. J. Cancer (2014) pmid: 24263064
- 67. Sequist LV, et al. J. Clin. Oncol. (2013) pmid: 23816960
- 68. Mok TS, et al. J. Clin. Oncol. (2018) pmid: 29864379
- 69. Jänne PA, et al. N. Engl. J. Med. (2015) pmid: 25923549
- **70.** Hong MH, et al. Cancer (2020) pmid: 32749686
- 71. Kim HS, et al. Oncotarget (2015) pmid: 26462025
- 72. Kim HS, et al. Clin. Cancer Res. (2015) pmid: 25424851 73. Mondal G, et al. Acta Neuropathol (2020) pmid:
- 32303840
- 74. Cavalieri S, et al. Eur. J. Cancer (2018) pmid: 29734047
- 75. Chi AS, et al. JCO Precis Oncol (2020) pmid: 32923886
- 76. Leighl et al., 2021; ESMO Abstract 1192MO
- 77. Cho et al., 2020; ESMO Abstract 12580
- 78. Bauml et al., 2021; ASCO Abstract 9006
- 79. Shu et al., 2021; ESMO Abstract 1193MO
- 80. Jänne PA, et al. Cancer Discov (2021) pmid: 34548309
- 81. Ahn MJ, et al. Lancet Respir Med (2017) pmid:
- 29056570
- 82. Yang Z, et al. Sci Transl Med (2016) pmid: 27928026
- 83. Ahn MJ, et al. Lancet Oncol (2019) pmid: 31587882
- 84. Lin L, et al. Lung Cancer (2022) pmid: 35248866
- 85. Reck M, et al. Lancet Respir Med (2019) pmid:
- 30922878
- Socinski MA, et al. J Thorac Oncol (2021) pmid: 34311108
- 87. Socinski MA, et al. N. Engl. J. Med. (2018) pmid: 29863955
- 88. Lu et al., 2021; ESMO Abstract VP9-2021
- 89. Vallee A, et al. Int. J. Oncol. (2013) pmid: 23934203
- **90.** Nature (2014) pmid: 25079552
- 91. Nature (2012) pmid: 22960745
- 92. Watzka SB, et al. Eur J Cardiothorac Surg (2010) pmid: 20353893
- **93.** Liang Z, et al. BMC Cancer (2010) pmid: 20637128
- 94. Grob TJ, et al. Lung Cancer (2013) pmid: 23238037
- 95. Park S, et al. Histol. Histopathol. (2012) pmid: 22207554
- 96. Dobashi Y, et al. Hum. Pathol. (2011) pmid: 21040950
- Ludovini V, et al. Cancer Chemother. Pharmacol. (2013) pmid: 23314677
 Skrzypski M, et al. Clin Lung Cancer (2013) pmid:
- 23870818 99. Kim SH, et al. Histol. Histopathol. (2012) pmid: 22419022

100. Lee JS, et al. Ann. Surg. Oncol. (2013) pmid: 23525704

101. Oakley GJ, et al. J Thorac Oncol (2011) pmid: 21587084

102. Marks JL, et al. J Thorac Oncol (2008) pmid: 18303429

23613520

- 156. Dicks E, et al. Oncotarget (2017) pmid: 28881617
- **157.** Tee AR, et al. Curr. Biol. (2003) pmid: 12906785 **158.** Mallela K, et al. Mol Cell Biochem (2021) pmid:
- 33575875 159. Adib E. et al. Clin Cancer Res (2021) pmid: 33727259
- 160. Nassar AH, et al. Mol Cancer Ther (2020) pmid: 31653662
- 161. Voss MH, et al. Clin. Cancer Res. (2018) pmid: 30327302
- 162. Ali SM, et al. Eur. Urol. (2015) pmid: 25796537
- 163. Lim SM, et al. Oncotarget (2016) pmid: 26859683
- 164. Kwiatkowski DJ, et al. Clin. Cancer Res. (2016) pmid: 26831717
- 165. Hamieh L, et al. PLoS Genet (2018) pmid: 30256787
- 166. Roldan-Romero JM, et al. Int J Cancer (2020) pmid: 31335987
- 167. Wagner AJ, et al. J Clin Oncol (2021) pmid: 34637337
- 168. Kopparthy P, et al. Cureus (2021) pmid: 34123648
- 169. Dickson et al., 2021; ASCO Abstract 3111
- 170. Liang MC, et al. Oncogene (2010) pmid: 19966866
- 171. Fuchs A, et al. Diagn Pathol (2014) pmid: 24593867
- 172. Inoki K, et al. Genes Dev. (2003) pmid: 12869586
- 173. Miloloza A, et al. Hum. Mol. Genet. (2000) pmid: 10915759
- 174. Hoogeveen-Westerveld M, et al. Biochim. Biophys. Acta (2010) pmid: 20547222
- 175. Hodges AK, et al. Hum. Mol. Genet. (2001) pmid: 11741833
- 176. Ann. N. Y. Acad. Sci. (1991) pmid: 2039135
- 177. van Slegtenhorst M, et al. Science (1997) pmid: 9242607
- 178. Crino PB, et al. N. Engl. J. Med. (2006) pmid: 17005952
- 179. Curatolo P, et al. Lancet (2008) pmid: 18722871
- 180. Zehir A, et al. Nat. Med. (2017) pmid: 28481359
- 181. Bailey MH, et al. Cell (2018) pmid: 29625053
- **182.** Bolton KL, et al. Nat Genet (2020) pmid: 33106634
- 183. Scheuermann JC, et al. Nature (2010) pmid: 20436459
- **184.** Cho YS, et al. J. Biol. Chem. (2006) pmid: 16606617
- **185.** Park UH, et al. J. Biol. Chem. (2011) pmid: 21047783
- 186. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
 187. Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- **188.** Xie M, et al. Nat. Med. (2014) pmid: 25326804
- 189. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- 190. Severson EA, et al. Blood (2018) pmid: 29678827
- 191. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212

Electronically signed by Erik Williams, M.D. |

34D2044309 Foundation Medicine, Inc. | 1.888.988.3639

Tel: 0800 880 177 | APAC.foundation@roche.com | www.foundationmedicine.co.nz

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA:

Roche Products (NZ) Ltd. 98 Carlton Gore Road, Newmarket, Auckland 1023. PO Box 109113, Newmarket, Auckland 1149

- 192. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 193. Chabon JJ, et al. Nature (2020) pmid: 32269342

PATIENT

- **194.** Razavi P, et al. Nat. Med. (2019) pmid: 31768066
- 195. Wu YL, et al. Lancet Oncol. (2014) pmid: 24439929
- 196. Passaro et al., 2019; ELCC Abstract 1150
- **197.** Audet et al., 2013; ASCO Abstract 6041
- 198. Lau SC, et al. Clin Lung Cancer (2019) pmid: 31178389
- **199.** Paz-Ares L, et al. Ann. Oncol. (2017) pmid: 28426106
- 200. Thongprasert S, et al. Lung Cancer Manag (2019) pmid: 31807143
- 201. Januszewski et al., 2018; IASLC WCLC Abstract P1.13-17
- 202. Suzuki et al., 2018; IASLC WCLC Abstract P1.01-92
- 203. Chang et al., 2018; IASLC WCLC Abstract P1.01-11
- 204. Llinás-Quintero N, et al. Case Rep Oncol Med (2019) pmid: 31637072
- **205.** Miller VA, et al. Lancet Oncol. (2012) pmid: 22452896
- **206.** Chen X, et al. Lung Cancer (2013) pmid: 23664448
- 207. Katakami N, et al. J. Clin. Oncol. (2013) pmid: 23816963
- 208. Landi L, et al. Clin Lung Cancer (2014) pmid: 25242668
- **209.** De Grève J, et al. Lung Cancer (2015) pmid: 25682316
- **210.** Yang JC, et al. Lancet Oncol. (2015) pmid: 26051236
- 211. Horn L, et al. Lung Cancer (2017) pmid: 29110849
- 212. Yamamoto N, et al. Adv Ther (2020) pmid: 31863283
- 213. Soria JC, et al. Lancet Oncol. (2015) pmid: 26156651
- 214. Dziadziuszko R, et al. J Thorac Oncol (2019) pmid: 30825613
- 215. Lai WV, et al. Eur. J. Cancer (2019) pmid: 30685684
- 216. Greulich H, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid: 22908275
- **217.** Gow CH, et al. J Thorac Oncol (2015) pmid: 26134234
- **218.** Mazières J, et al. Ann. Oncol. (2016) pmid: 26598547
- **219.** Mazières J, et al. J. Clin. Oncol. (2013) pmid: 23610105
- **220.** De Grève J, et al. Lung Cancer (2012) pmid: 22325357
- **221.** Li BT, et al. Lung Cancer (2015) pmid: 26559459
- 222. Costa DB, et al. J Thorac Oncol (2016) pmid: 26964772
- 223. Yuan B, et al. Front Oncol (2020) pmid: 32477948
- 224. Fang W, et al. Oncologist (2019) pmid: 31748336
- 225. Schuler M, et al. Ann. Oncol. (2016) pmid: 26646759
- 226. Opsomer RJ, et al. Acta Urol Belg (1985) pmid: 2986437
- 227. Wu et al., 2018; WCLC abstract MA26.11
- 228. Ramalingam SS, et al. Ann. Oncol. (2016) pmid: 26768165
- 229. Yu HA, et al. Lung Cancer (2017) pmid: 29191595
- 230. Reckamp KL, et al. Cancer (2014) pmid: 24501009

M-NZ-00000257v2/SEP2022

231. Jänne PA, et al. Clin. Cancer Res. (2011) pmid: 21220471

232. van Geel RMJM, et al. Br. J. Cancer (2020) pmid: 32147669

TUMOR TYPE

Lung non-small cell lung carcinoma (NOS)

233. Jänne PA, et al. J Thorac Oncol (2016) pmid: 26899759

APPENDIX

REPORT DATE

References

- 234. Cappuzzo F, et al. Lancet Oncol. (2010) pmid: 20493771
- 235. Zhong WZ, et al. J. Clin. Oncol. (2019) pmid: 31194613
- 236. Petrelli F, et al. Clin Lung Cancer (2012) pmid: 22056888
- 237. Truini A, et al. Clin. Cancer Res. (2019) pmid: 31182434
- 238. Leon et al., 2014; doi.org/10.1093/annonc/mdu349.52
- **239.** Lee CK, et al. J. Natl. Cancer Inst. (2017) pmid: 28376144 **240.** Yang JJ, et al. Br. J. Cancer (2017) pmid: 28103612
- **241.** Zhou Q, et al. Cancer Cell (2021) pmid: 34388377
- **242.** Kawashima Y, et al. Lancet Respir Med (2022) pmid:
- 34454653 243. Saito H, et al. Lancet Oncol (2019) pmid: 30975627
- 244. Piccirillo et al., 2021; ESMO Abstract 12070
- 245. Faehling M, et al. J Cancer Res Clin Oncol (2018) pmid:
- 29687154 246. Nakagawa K, et al. Lancet Oncol. (2019) pmid: 31591063
- **247.** Han JY, et al. J. Clin. Oncol. (2012) pmid: 22370314
- 248. Maemondo M, et al. N. Engl. J. Med. (2010) pmid: 20573926
- 249. Mitsudomi T, et al. Lancet Oncol. (2010) pmid: 20022809
- 250. Mok TS, et al. N. Engl. J. Med. (2009) pmid: 19692680
- 251. Qi WX, et al. Curr Med Res Opin (2015) pmid: 25329826
- 252. Zhao H, et al. J Thorac Oncol (2015) pmid: 25546556
- 253. Wang J, et al. Int. J. Cancer (2019) pmid: 30255937
- Baik CS, et al. J Thorac Oncol (2015) pmid: 26398831
 Yoshioka H, et al. Ann. Oncol. (2019) pmid: 31553438
 Fukuoka M, et al. J. Clin. Oncol. (2011) pmid: 21670455

257. Sutiman N, et al. J Thorac Oncol (2017) pmid: 27908825

258. Noronha V, et al. J. Clin. Oncol. (2019) pmid: 31411950

259. Hosomi Y, et al. J. Clin. Oncol. (2020) pmid: 31682542

260. Creelan BC, et al. Br J Cancer (2021) pmid: 33012782

261. Alanazi A, et al. Lung Cancer Manag (2020) pmid:

263. Ramalingam SS, et al. N. Engl. J. Med. (2019) pmid:

267. Oxnard GR, et al. Ann. Oncol. (2020) pmid: 32139298

© 2022 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 24 Of 24

Sample Preparation: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

Sample Analysis: 150 Second St., 1st Floor, Cambridge, MA 02141 · CLIA: 22D2027531

262. Kim et al., 2021; DOI: 10.1200/PO.20.00296

264. Herbst et al., 2020; ASCO Abstract LBA5

266. Soo et al., 2021; ESMO Abstract VP3-2021

265. Kenmotsu et al., 2021; ESMO Abstract LBA44

33318755

31751012